
M
an

us
cr

ip
t A

cc
ep

te
d 

fo
r p

ub
lic

at
io

n 
in

 N
eu

ro
co

m
pu

tin
g.

 h
ttp

://
dx

.d
oi

.o
rg

/1
0.

10
16

/j.
ne

uc
om

.2
01

3.
02

.0
27

Efficient Computation of Histograms on Densely Overlapped Polygonal Regions
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Abstract

This paper proposes a novel algorithm to efficiently compute the histograms in densely overlapped polygonal regions. An incre-

mental scheme is used to reduce the computational complexity. By this scheme, only a few entries in an existing histogram need

to be updated to obtain a new histogram. The updating procedure makes use of a few histograms attached to the polygon’s edges,

which can be efficiently pre-computed in a similar incremental manner. Thus, the overall process can achieve higher computational

efficiency. Further, we extend our method to efficiently evaluate objective functions on the histograms in polygonal regions. The

experiments on natural images demonstrate the high efficiency of our method.

Keywords: polygon, efficient computation, histogram, incremental computation

1. Introduction

Histogram is one of the most frequently used techniques

to encode image features, e.g., histograms of oriented gradi-

ent (HoG) [1], histograms of color intensity [2], local binary

pattern (LBP) [3], scale-invariant feature transform (SIFT) [4],

and bag of visual words [5]. These features are used for de-

tection [1, 6], recognition [7], image classification [8], tracking

[9], flow estimation [10], image retrieval [11], face liveliness

detection [12], and many other vision tasks. In some of these

applications, histograms are computed in the neighborhood re-

gions around keypoints [4] that are sparsely located on images.

In other cases, histograms are computed in densely overlapped

regions [1, 6] that are organized in regular grids. The keypoint-

based paradigm of feature extraction is widely used for images

[4] and even for time series [13] due to its high efficiency that

attributes to the sparsity of the keypoints. In contrast, the grid-

based paradigm can produce richer image features with a much

higher computational cost. Generally, the feature richness can

significantly benefit the solution of vision tasks [10], such as

improving the accuracy rate of the detection and recognition

applications. To make practical use of the richer image features

produced by the grid-based paradigm, improving the efficiency

of histogram computation in densely overlapped regions is very

important.

There are several algorithms in the literature to efficiently

compute the image histograms in densely overlapped regions.

Porikli et al. [14] applied the integral image [15] to histogram

computation. When the number of histogram bins is much

smaller than the number of pixels in the region, better efficiency

was obtained with a high memory cost. Otherwise, it is even

worse than the simplest method. Sizintsev et al. [16] utilized

the overlap between regions to reduce redundant computation.

∗Corresponding author. Email: ymingwang@gmail.com

In [17], Wei et al. presented a similar idea and extend it to the

function evaluation on histograms, making the evaluation more

scalable to the bin number and the region size, which are usu-

ally large in computer vision problems.

Most existing algorithms compute histograms in rectangu-

lar regions. However, many real-world objects show diverse

shapes and poses. For example, the whole shape of an airplane

is irregular. The wings are triangular, the engines are oval, and

the windows appear to be parallelograms in most poses. Thus,

the image features often include noisy background or lose nec-

essary foreground information if we merely use rectangular re-

gions. Hence, features extracted in rectangular regions are in-

sufficient to describe images well in many circumstances.

In order to obtain more discriminative features, it is nec-

essary to compute the histograms in non-rectangular regions.

Pham et al. [18] used the triangular integral image to efficiently

compute polygonal Haar-like features, and demonstrated that

features in suitable non-rectangular local regions can better de-

scribe the visual characteristics of images. Compared with the

Haar-like feature, the histogram in the region with a suitable

shape can be more powerful and discriminative in describing vi-

sual information. The triangular integral image can be straight-

forwardly generalized for histogram computation, nevertheless

it does not scale well on the histogram bin number as [14] did on

rectangular regions. So far, to efficiently compute histograms in

non-rectangular regions is still an unsolved problem, and there

is no work to integrate efficient function evaluation into his-

togram computation for non-rectangular regions.

This paper proposes a novel algorithm to address the prob-

lem. We focus on the case of computing histograms in polyg-

onal regions, and consider the typical situation in object detec-

tion and image retrieval as well as in many cases of other tasks,

in which each polygon is required to slide along the rows and

columns of images, thus generating a large number of densely

overlapped polygonal regions. Given two overlapped regions, if

Preprint submitted to Elsevier March 31, 2013
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the histogram in one region is computed, we update it according

to two regions’ non-overlapped areas to obtain the histogram in

the other one. The non-overlapped areas is broken into smaller

ones. The histogram in each smaller area can be pre-computed

efficiently. In addition, we extend this incremental scheme to

the problem of evaluating objective functions on the histograms

in polygonal regions.

Wei et al.’s method [17] for rectangular regions can be taken

as a special case of ours. Compared with it, our method is

designed with more decent efforts on constructing the incre-

mental computation strategy, handling the computational pro-

cedure, and devising more efficient data structure. The pro-

posed method has no strong connection with Pham et al.’s tri-

angular integral image [18]. However, their idea of decompos-

ing computation according to the edges of a polygon gives us

inspiration.

We compare the proposed algorithm with several other meth-

ods, including the most straightforward method, the generaliza-

tion of the triangular integral image, and a simplified variation

of our method. The experimental results show that the proposed

algorithm is computationally more efficient.

2. Basic Idea

Given a W ×H index bitmap with B indices, we represent it

as a function A(x, y) ∈ {1, 2, . . . , B} for x ∈ {1, 2, . . . ,W} and y ∈
{1, 2, . . . ,H}. By locating the left-top corner of the index bitmap

at the origin of R2 (y axis pointing down), A is generalized to

the continuous domain as

a(x, y) =

⎧⎪⎪⎨⎪⎪⎩
A(�x� , �y�), 0 < x ≤ W, 0 < y ≤ H,
0, otherwise,

(1)

where (x, y) ∈ R2, �·� is the ceiling function, and the pixel (x, y)

on A is the unit square region (x−1, x]× (y−1, y] on R
2. Given

a region Φ ∈ R2, we denote the histogram of a in it as

c(Φ) = (c1(Φ), c2(Φ), . . . , cB(Φ)) , (2)

where,

cb(Φ) =

∫∫
Φ

ιb(a(x, y))dxdy, (3)

ιb(t) = 1 if t = b, and ιb(t) = 0 if t � b.

For two regions Φ and Φ′, the following equations holds,

c(Φ′) = c(Φ) + δc(Φ′,Φ), (4)

where,

δc(Φ′,Φ) = c(Φ′\Φ) − c(Φ\Φ′) (5)

is the overall residual histogram, and “\” denotes set subtrac-

tion. As shown in Fig. 1a, if the region Φ′ is obtained by mov-

ing Φ a little rightward, Φ and Φ′ have much overlap. Φ′\Φ
is the newly emerged region in Φ′ which is called the positive
residual in this paper. Similarly, Φ\Φ′ is the negative resid-
ual. According to (4), if c(Φ) is known, c(Φ′) can be computed

from c(Φ) by adding only the non-zero entries of δc(Φ′,Φ). In-

deed, the number of these non-zero entries is usually very small

compared with the bin number of δc(Φ′,Φ). This is true if the

number of pixels inside Φ′\Φ and Φ\Φ′ is smaller than the

bin number. More importantly, we observed that nearby pix-

els in index bitmaps used for visual feature extractions usually

have the same value with high probability. This phenomenon

attributes to the local smoothness of the natural images, from

which the index bitmap is obtained. As a result, no matter how

largeΦ′\Φ andΦ\Φ′ are, δc(Φ′,Φ) is usually very sparse when

the movement between Φ and Φ′ are not too large. Hence, the

incremental computation scheme in (4) helps to improve the

efficiency in computing c(Φ′) and further improve the overall

computational efficiency of all histograms on an index bitmap.

It is worth pointing out that, in many cases (e.g. the compu-

tation of HoG [1]), different pixels on the index bitmap are asso-

ciated with different weights. Let γ(x, y) be the bitmap of pixel-

wise weights. (3) then becomes cb(Φ) =
∫∫
Φ
γ(x, y)db(a(x, y))dxdy.

In this case, (4) still holds, so our algorithm also works with in-

dex bitmaps of weighted pixels.

The idea of incremental filtering has a long history. It ap-

peared early in [19], and was surveyed by [16] for histogram

computation in rectangular regions. In [17], the importance of

local smoothness on incremental histogram computation was

demonstrated. Here, we extend these idea to the case of non-

rectangular regions.

3. Incremental Histogram Computation with Residual Seg-
mentation

The computation efficiency of (4) is determined by both the

nature of index bitmaps and how efficiently the overall residual

histogram δc(Φ′,Φ) can be computed for overlapped regions Φ

and Φ′. In this section, we present an efficient algorithm for

the case where Φ and Φ′ are of the same polygonal shape. We

show that the residuals between two polygonal regions of the

same shape, P and P′, can be broken into several parts. Each

part is attached to one edge and called the edge residual. The

computation of δc(P′, P) then reduces to the computation of the

histogram in every edge residual, which can be pre-computed

by a similar incremental scheme as that in (4).

3.1. Edge Residuals

Given a polygonal region P represented by a vertex list

v1v2 . . . vN , the ith edge vivi+1 (vN+1 = v1) is left-side/right-side
if its left/right side is P’s exterior, or horizontal if it has a zero

slope. Let vi = (xi, yi), and v1v2 . . . vN be clockwise ordered,

vivi+1 is left-side if and only if yi > yi+1, and is right-side if and

only if yi < yi+1.

As shown in Fig. 1b, we move P horizontally a little right-

ward with a given stride and obtain a new polygonal region

P′ = u1u2 . . . uN . For each non-horizontal edge vivi+1, an edge

residual Δ(vi, vi+1) is formed by vivi+1ui+1ui. The edge residu-

als attached to right-side edges are parts of the positive residual

P′\P, and those attached to left-side edges are parts of the neg-

ative residual P\P′. These edge residuals constitute the overall

residual between P and P′. Thus, the over residual histogram

2
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Figure 1: The diagram of incremental histogram computation in polygonal regions. (a) Positive/negative residual. (b) Edge residuals generated by sliding the

polygon. (c) The good edge residual pair for incrementally computing the histograms in edge residuals. (d) The bad edge residual pair with small overlaps and

irregular non-overlapped regions between them. (e) The histograms in edge residuals in the first a few rows are directly computed. (f) The histograms in most edge

residuals are incrementally computed.

δc(P′, P) can be computed by

δc(P′, P) =

N∑
i=1

(−1)ωi c(Δ(vi, vi+1)), (6)

where ωi = 1 if vivi+1 is a left-side edge, otherwise ωi = 0.

Note that the overlap between edge residuals always happens

in a left-side edge and a right-side one, so it is neutralized in

the computation of δc(P′, P).

The decomposition scheme used in (6) has a loosely analog-

ical relationship with that of image integration in [18], where

the integration in a polygonal region is decomposed into the

summation of those in several triangular regions attached with

edges. Nevertheless, while the decomposition scheme in [18]

is tailored to polygons, ours is for the residuals between two

polygonal regions of the same shape.

3.2. Pre-computation of the Histograms in Edge Residuals
The densely overlapped polygonal regions are generated by

sliding a polygon from the origin with a fixed stride to any valid

positions on the index bitmap. According to (6), we need to

compute the histograms in edge residuals to obtain the over-

all residual histograms between adjacent overlapped polygonal

regions. During the sliding of a polygonal region, each edge

generates a sequence of edge residuals, as shown in Fig. 1e.

As there are overlaps between them, the histograms in these re-

gions can be pre-computed by a similar incremental manner to

that in (4). Previously, Wei and Tao proposed a technique in

[17] for histogram computation in rectangular regions with the

same purpose as ours. However, our case is more obscure than

theirs. For one edge residual, we first discuss how to find a good

counterpart to apply the incremental scheme. Then, we give the

overall pre-computation procedure. We assume each vertex of

a polygon P has an integer coordinate and P slides along the

row or column pixel by pixel. The stride will be generalized to

arbitrary integer values later.

For an edge vivi+1, where vi = (xi, yi), let its width be wi =

|xi+1 − xi|, its height be hi = |yi+1 − yi|, and τi = gcd(wi, hi),

where gcd(·, ·) is the greatest common divisor. As pointed out

3
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in [18], vivi+1 passes (τi −1) integer points besides its two ends.

These integer points equally divide vivi+1 into τi segments, each

of which has width ŵi = wi/τi and height ĥi = hi/τi. These

segments are the smallest ones ending at integer points, and are

also the largest ones internally passing no integer point, so we

take them as the unit segments of vivi+1. For instance, in Fig. 1c,

v2v3 is equally divided by (6, 5) and (7, 7) into 3 unit segments

with width 1 and height 2.

As shown in Fig. 1c, when vivi+1 is moved downward to

v′i v
′
i+1 along with the moving of P, there are two edge residu-

als, Δ(vi, vi+1) and Δ(v′i , v
′
i+1). Provided τi > 1, the two edge

residuals have the good overlap layout when the coordinate of

v′i is

v′i = (xi + αŵi, yi + ĥi), (7)

where,

α = sign((yi+1 − yi) · (xi+1 − xi)) ∈ {−1, 0, 1}.
In the good layout, the overlapped region and non-overlapped

regions betweenΔ(v′i , v
′
i+1) andΔ(vi, vi+1) all have regular shapes,

say parallelograms. Further, because v′i v
′
i+1 is obtained by slid-

ing vivi+1 with one of its unit segments, Δ(v′i , v
′
i+1) is the edge

residual closest to Δ(vi, vi+1) that has regular overlap layout with

Δ(vi, vi+1). In contrast, if (7) does not hold, the overlap layout

is not good, where the non-overlapped regions can be irregular

and hard to deal with, as shown in Fig 1d.

By finding the good counterpart for one edge residual, we

can use the incremental scheme to improve the efficiency of the

histogram pre-computation in all the edge residuals. The over-

all procedure is summarized as follows. For each edge vivi+1,

we first directly compute the histograms in all its residuals in

the first ĥi rows (see Fig. 1e). Then, if α > 0, the histograms

in its residuals in the first ŵi columns are computed directly

(see Fig. 1f). Otherwise, the histograms in its residuals in the

last ŵi columns are directly computed. As the spatial depen-

dency of the incremental computation has an offset of (αŵi, ĥi),

the obtained histograms are sufficient initialization for comput-

ing the other histograms in vivi+1’s residuals. Thus, for each

of the rest edge residuals, we find its good counterpart whose

histogram has been obtained and compute the histogram incre-

mentally and efficiently by (4) (see Fig. 1f).

The incremental pre-computation of histograms in vivi+1’s

edge residuals is useful only when τi > 2. If τi = 1, Δ(vi, vi+1)

andΔ(v′i , v
′
i+1) do not have any overlap when (7) holds. If τi = 2,

the non-overlapped regions between Δ(vi, vi+1) and Δ(v′i , v
′
i+1)

has the same size as that of Δ(v′i , v
′
i+1). In either case, the time

complexity of the incremental pre-computation is not smaller

than that of the direct computation. Therefore, we do not pre-

compute the histograms in vivi+1’s edge residuals by incremen-

tal scheme if τi ≤ 2.

Let ξx and ξy be the horizontal and vertical sliding strides,

respectively. With only minor modifications, the proposed al-

gorithm can be adapted to the situation where ξx and ξy can be

larger than 1. Let

κi = lcm

⎛⎜⎜⎜⎜⎝ ξx

gcd(ŵi, ξx)
,

ξy

gcd(ĥi, ξy)

⎞⎟⎟⎟⎟⎠ , (8)

where lcm(·, ·) is the least common multiple. It is verified that,

when v′i − vi = (ακiŵi, κiĥi), Δ(vi, vi+1) and Δ(v′i , v
′
i+1) are in

the good layout. In this case, we do not need to pre-compute

vivi+1’s residuals at every integer position on the index bitmap,

as they are arrayed with the horizontal interval ξx and vertical

interval ξy. Note that, the incremental scheme for pre-computing

the histograms in vivi+1’s edge residuals is only useful when

τi > 2κi.

4. Incremental Function Evaluation on Histograms

For many applications such as object detection [1], an ob-

jective function using histograms as input needs to be evaluated.

As pointed out in [17], if the objective function is bin-additive,

i.e., F(Φ) =
∑B

b=1 fb(cb(Φ)), F(Φ′) can be updated from F(Φ)

by adding a term δF(Φ′,Φ), where

δF(Φ′,Φ) =

B∑
b=1

δ fb(Φ′,Φ), (9)

δ fb(Φ′,Φ) = fb(cb(Φ′)) − fb(cb(Φ)).

As previously mentioned, Φ and Φ′ denote two overlapped re-

gions. Still, only those entries corresponding to the non-zero

entries of δc(Φ′,Φ) are needed to be computed. In more detail,

fb(cb(Φ)) have been computed for b = 1, 2, . . . , B. If the bth en-

try of δc(Φ′,Φ) is zero, we directly get fb(cb(Φ′)) = fb(cb(Φ))

and δ fb(Φ′,Φ) = 0. Otherwise, we evaluate fb(cb(Φ′)) and

compute δ fb(Φ′,Φ). Note that, if we let fb(c) = cεb, where

{εb}Bb=1
is the standard basis of RB, F(Φ) becomes h(Φ), which

indicates that the histogram computation is a special case of the

function evaluation.

The above extension from the incremental histogram com-

putation to the incremental evaluation of histogram-based func-

tion is independent of the shapes of image regions, and hence

does not affect the incremental computation scheme for polyg-

onal regions presented in the previous section.

5. Implementation Detail and Algorithm Analysis

In this section, we first present the data structure for han-

dling the histograms in both edge residuals and overall resid-

uals in a very efficient way, give more detail on the computa-

tion procedure, and make a comprehensive analysis on the time

complexity of our algorithm. Finally, an additional improve-

ment is also presented.

5.1. Data Structure of Histograms in Residuals
We use a vector-list pair structure to store a histogram in a

residual. An illustration of this structure is shown in Fig. 2a.

Non-zero entries are stored in a list with a predefined length of

no more than the histogram bin number B. Each list node is

either left empty or filled with the value and index of one non-

zero entry. The non-empty nodes are kept in the front of the

list, and the empty ones are left behind. We use a pointer X to

indicate the end of the non-empty sub-list, and Y to that of the

whole list. The list head is denoted by head. Pointers to the

4
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Figure 2: Data structure and histogram operation in our method. X: the end of

non-empty nodes. Y: the list end.

list nodes (NULL for zeros) are stored in a B-entry vector in the

same order as that of the histogram bins. When a new non-zero

entry emerges, an “insertion” operation is performed, where we

assign the entry to the next node of the current X and point X

to it (see Fig. 2b). When a non-zero entry becomes zero, we

apply the “removal” operator to the corresponding node, where

if the current X points to it, we simply move X to its previous

node; otherwise, we move it to be the next node of the current

Y and point Y to it. Neither “insertion” nor “removal” operator

requires memory allocation or deallocation, which is very time-

consuming (see Fig. 2c).

Based on above data structure, we can operate the histogram

in a very efficient way. Suppose that the time cost of a ba-

sic arithmetic operation is ta. Using the list, the non-zero his-

togram entries can be quickly traversed in negligible time. Us-

ing the vector, a random reference to an entry of the histogram

can be done in constant time, which is about ta and attributes

to the arithmetic operation for checking whether the entry is

zero-valued. In our implementation, the insertion and removal

operators cost the time of about 2ta and 6ta, respectively. Thus,

the time cost of a random reference to a histogram entry is ap-

proximately

tr ≈ ta + s(2ta + 6ta)/2 = (1 + 4s)ta, (10)

where s is the probability that an insertion or removal occurs.

The proposed data structure is similar to that in [17]. Neverthe-

less, since the latter needs linear time in conducting an “inser-

tion” or “removal”, ours are more efficient.

5.2. Computation Detail

We use the vector-list pair to store edge residuals. For the

ith edge of the polygon, vivi+1, we allocate Wi × ĥi vector-list

pairs, where ĥi is the height of its unit segment as previously

mentioned in (7), and Wi is the number of vivi+1’s edge residuals

per row. The vector-list pair array is obviously not large enough

for storing the histograms in all vivi+1’s edge residuals at the

same time. Indeed, it is also not necessary to pre-compute all

the histograms at once.

For the clarity purpose, we only discuss the case in which

the polygonal region slides with the stride of 1. We slides the

polygonal region from the left to the right along a row, and

repeat the horizontal sliding from the top row to the bottom.

When the polygonal region slides horizontally, only the his-

tograms in one row of the edge residuals is needed. Hence, we

only pre-compute histograms in the edge residuals along each

row when the polygonal regions slides there.

However, rather than discard these histograms immediately

after the horizontal sliding of the polygon along a row, we should

keep them until the histograms depending on them are com-

puted. For vivi+i, let us write the mapping from the histograms

in its residuals to the entries of the vector-list pair array as

ψi(x, y), where (x, y) is the left-corner location of a residual,

and ψi(x, y) outputs the column-row index (starts from (0, 0)) of

the array entry mapped with the histogram in that residual. This

mapping is defined as

ψi(x, y) =
(

mod(x + ŵi · 	y/ĥi
,Wi) , mod(y, ĥi)
)
, (11)

where 	·
 is the floor function, and mod(·, ·) computes the re-

mainder left behind upon dividing the first argument by the

second one. It is easy to see that ψi(x + ŵi, y + ĥi) = ψi(x, y),

which indicates that the two histograms in the residuals of a

good layout for incremental pre-computation shares the same

vector-list pair. Hence, without allocating a new vector-list pair,

the histogram in an edge residual can be directly updated from

its counterpart located at some row with a smaller y-coordinate.

In additional, as long as ψi(x′, y′) � ψi(x, y) for |y′ − y| < ĥi,

the Wi × ĥi vector-list array is sufficient large for handling the

histograms in all vivi+i’s edge residuals.

5.3. Time Complexity

Based on the vector-list pair structure and the above com-

putational procedure, we now discuss the computational com-

plexity in the three key parts of our method: 1) the histogram

pre-computation in edge residuals; 2) the overall residual his-

togram computation; 3) the function evaluation. Still, we only

discuss the case where the sliding stride is 1.

As to the histogram pre-computation in edge residuals, the

histogram in an residual of the ith edge, e.g. Δ(v′i , v
′
i+1), can be

updated from that in its good counterpart, e.g. Δ(vi, vi+1), by

2ri references to the histogram entries and 2ri additions, where

ri is the number of pixels in one of the two non-overlapped

small regions. By saying the pixels in a region, we actually

means the pixels intersected with the region, since a pixel at

the region’s border may only have a portion inside the region.

5
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The computational cost in one sliding step is 2r(tr + ta), where

r =
∑N

i ri, and N is the number of the polygonal edges.

Suppose n pixels in a region show kn different indices in the

histogram on average. Let p be the total number of pixels in all

edge residuals. For the computation of the overall residual his-

togram in one sliding step, only kp references into the overall

residual histogram and additions are needed, so its time cost is

kp(tr + ta). In total, the time cost of the two histogram com-

putation stages in one sliding step is 2r(tr + ta) + kp(tr + ta) =

2(2r + kp)(1 + 2s)ta.

In function evaluation, c(Φ′) is first updated from c(Φ) by

kp additions, where Φ′ and Φ are two overlapped regions as

they are used in (4). Then, kp evaluations on fb and 2kp ad-

ditions are needed for computing F(Φ′). Let t f be the time

cost for evaluating fb. The time cost here in one sliding step is

kp(t f + 3ta).

5.4. Additional Improvement

In addition, we propose an improvement on our algorithm.

When more than one edges of the polygon have the same height

and width, we let them share the histograms in edge residuals.

Thus, the cost of histogram pre-computation in edge residuals

is cut down linearly with respect to the number of the edges

that are identical in both slope and length. As this improvement

has no strong connection with the main algorithm, we present it

after the time complexity discussion to avoid unnecessary diffi-

culties in analyzing the algorithm.

6. Evaluation

We compare our method with three other approaches. The

first one computes histograms by directly traversing the pixels

in polygonal regions. The second one is the generalization of

Pham et al.’s triangular integral image [18] for histogram com-

putation. The third one computes histograms incrementally, but

the histograms in edge residuals are directly computed without

pre-computation. We denote it as INC-Basic and our method as

INC-Edge.

For the clarity purpose, we still only focus on the pixel-by-

pixel sliding case. We first compare the theoretical time com-

plexity among the four competing methods, and prove that the

proposed method shows the lowest time complexity. After that,

we investigate the practical performance of different methods

on natural images. The experimental results coincide with the

theoretical analysis, and the proposed method is demonstrated

be the most efficient.

6.1. Algorithm Complexity

Table 1 summarized the time complexity of the four al-

gorithms in one sliding step. The histogram computation and

function evaluation are separately investigated in analytical forms.

In the following, we explain and analyze the time complexity of

each algorithm.

Direct method: Let q be the number of pixels in the given

polygonal region. The direct method performs q additions to

Table 1: Algorithm complexity k, s � 1, r � p � q

Method
Time cost

Histogram computation Function evaluation

Direct q · ta B · (t f + ta)

Integral (r + N)B · 2ta B · (t f + ta)

INC-Basic p · (1 + 2s) · 2ta kp(t f + 3ta)

INC-Edge (2r + kp) · (1 + 2s) · 2ta kp(t f + 3ta)

Figure 3: Polygons used in our experiments.

compute the histogram, which cost the time of qta. It then esti-

mates fb for each of the B bins, and sums up the values with B
additions to get the evaluation of F. For each bin, the time cost

is (t f + ta).

Integral method: In this method, every bin requires a group

of triangular integral images. For one bin, the integral image

construction at a single position needs about (ri + 2ŵi + 2) ad-

ditions (approximately taken as 2ri for better comparison) for

the ith edge of the polygon, where ri is the same as that used

for analyzing INC-Edge. For all the N edges, the time cost

is 2rta. With the pre-computed integral images, computing one

histogram bin requires (2N−1) (roughly taken as 2N) additions

(refers to [18]). Thus, the time cost for computing histogram is

2(r+N)Bta in total. The function evaluation here is the same as

that of the direct method. Since the time cost is strictly linear

to B, the integral method is inefficient for the histograms with

large bin numbers.

INC-Basic: Recall the symbols we previously defined for

analyzing the proposed algorithm. p is the pixels in all the edge

residuals, and k indicates how probable nearby pixels show dif-

ferent index values. In each sliding step of INC-Basic, we need

p references into the overall residual histogram and p additions

to compute the histogram in the new region. The time cost is

p(tr+ta) = 2p(1+2s)ta, where s indicates how often a histogram

entry switches between zero and non-zero. The function evalu-

ation is the same as that in INC-Edge.

The time complexity of INC-Basic in histogram computa-

tion is lower than that of the direct integral method. When the

polygon is not too small, q/p is large. As s is a small number,

usually in (0.03, 0.3) for natural images [17], q/p > 2(1 + 2s)

holds in most of the time, so INC-Basic is more efficient than

the direct method in histogram computation.

The comparison on histogram computation between INC-

Basic and the integral method is somewhat complex. When

the polygon is large, q become large. Thus, it is possible that

p(1+2s) > (r+N)B, which indicates INC-Basic may not as ef-

ficient as the integral method for large polygons. However, p is

practically too small so that the opposite of the above inequality

nearly always holds in practice. In Section 6.2, we will demon-

strate that even when the polygon is much larger than the nor-
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(a) Original (b) Hue-Saturation (c) 1024 bins (d) 256 bins (e) 64 bins (f) 16 bins

Figure 4: Illustrations of images in our experiments. a: original RGB images; b: the hue-saturation images with constant intensity; c-f: uniformly quantized

hue-saturation images with various quantization levels, where each different value maps to a unique color.

mally used size, INC-Basic still significantly outperforms the

integral method in efficiency.

In the function evaluation, k is usually very small because of

the local smoothness in natural images. According to [17], k is

normally in the same range as s, say approximately (0.03, 0.3).

Consequently, kp � B generally holds. It indicates that INC-

Basic is more efficient in function evaluation than the direct and

integral method.

INC-Edge: INC-Edge is the same as INC-Basic in func-

tion evaluation, and more efficient than INC-Basic in histogram

computation.

Let τ0 be the greatest number satisfying τi ≥ τ0 for i =
1, 2, . . . ,N. We have (2r + kp) ≤ (k + 2/τ0)p. Because k �
1 as previously mentioned, if τ0 > 2, it holds (k + 2/τ0) <
1, which indicates that INC-Edge is more efficient than INC-

Basic. Besides, even if τ0 ≤ 2, the efficiency of INC-Edge is at

least the same as that of INC-Basic, as long as we always switch

the way of pre-computing the histograms in the edge residuals

of the ith edge from incremental scheme to the direct method if

τi ≤ 2 (refer to Section 3.2). In addition, as polygons with large

τ0 can always be designed, the efficiency of INC-Edge can be

improved further.

6.2. Quantitative Evaluation

In our experiments, we use the nine predefined polygons

shown in Fig. 3, and set the sliding stride to 1.

To practically evaluate the efficiency of our methods, we

randomly chose 100 natural images from PASCAL VOC2010

dataset [20] for testing. The images are converted into the HSL

color space. Their hue and saturation are uniformly quantized

into bins for histogram computation. As it is shown in Fig. 4,

the natural images that we use show local smoothness (Fig. 4a),

which is more significant when only the hue and saturation

are kept (Fig. 4b). In the index bitmaps quantized from the

hue-saturation images, identical values occur frequently among

nearby pixels (Fig. 4c-f). This property agrees with the assump-

tion of our method. As it is pointed out in [17], many other

types of image responses, such as quantized gradient orienta-

tion [1], also have such a property.

For the evaluation of objective functions, we compared three

functions, dot product, entropy and SVM χ2 kernel, whose com-

putational cost grows one by one. These functions are useful

in solving many computer vision problems. The dot product

simulates linear classifiers, such as linear SVM and AdaBoost.

Entropy is useful in tasks such as saliency detection, and may

also simulate some regression kernels. The χ2 kernel is a popu-

lar kernel for non-linear SVM. We omit the analytical forms of

the three functions here, as [17] have addressed them in detail.

We implemented the competing methods, say the direct method,

integral method, INC-Basic, and INC-Edge, in standard C++

with the single-thread paradigm. For fair comparison, our im-

plementation of the four methods shares the same auxiliary mod-

ules, such as those for manipulating polygons and evaluating

objective functions. We compiled the implementation by GNU

C++ Compiler with Level 3 optimization (-O3), a commonly

used setting for building UNIX applications, and carried out

the experiments on a common PC with a 3.2GHz Intel Core i3

CPU and 4G 1333MHz RAM.

We measure the algorithm efficiency in Time Consumption
Per Region (TCPR), which is the average time spent on com-

puting the histogram in each image region on all the test images.

Results on the nine different polygons are averaged.

In Fig. 5, we compare the efficiency between our method

and the other methods when the polygon size changes, where

the size of a polygon is defined as the maximum of the poly-

gon’s width and height. The TCPR of the direct method grows

very fast with the increase of the polygon size. That of the inte-

gral method appears stable, but always stays at a high cost level.

Even though the TCPR of INC-Basic and INC-Edge grows, it is

still much lower than that of the integral method when the poly-

gons become very large. As we expected, INC-Edge achieves

the best efficiency in both the histogram computation and func-

tion evaluation. Its TCPR ranges from 10−6 to 10−5 second

for function evaluation, which indicates that densely evaluat-

ing histogram-based function on a 480× 360 image can be pro-

cessed in only 1 second even in large image regions.

Fig. 6 shows the TCPRs of the competing methods against

the bin number of histograms. Our algorithm is more efficient

than the direct method by an order of magnitude. Compared

with the integral method, the TCPR increase of our method is

much slower against the growth of the bin number. The gap

between INC-Edge and INC-Basic decreases as the bin number

7
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Figure 5: Time consumption against polygon size (measured by TCPR in sec-

onds). The bin number is 256.

Figure 6: Time consumption against bin number (measured by TCPR in sec-

onds). The polygon size is 60.

grows. A probable interpretation is that the function evaluation

contributes more to the overall time complexity when the bin

number becomes larger, so INC-Edge’s superiority over INC-

Basic in histogram computation turns out to be less significant.

Nevertheless, in the normally used range of the histogram bin

number, INC-Edge outperforms INC-Basic.

7. Conclusion& Future Work

Research on efficient computation of histograms in non-

rectangular regions is important, but have not been got enough

attention. We have proposed an incremental computation method

to efficiently compute the histograms in polygonal regions. Com-

pared with state-of-the-art methods, our method achieves much

higher efficiency in both the histogram computation and func-

tion evaluation. We believe that this algorithm have solved

one of the biggest obstacles in using histograms computed in

polygonal regions. With the proposed algorithm, research top-

ics such as polygonal local histogram-based features and non-

rectangular object detection/recognition can be studied in the

further. It is also possible to generalize the proposed algorithm

for histogram-based feature extraction in non-cubic 3-D vol-

umes, which may benefit histogram-based approaches for video

classification [21] and 3-D face recognition [22].
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