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Abstract

Object detection performance, as measured on the
canonical PASCAL VOC dataset, has plateaued in the last
few years. The best-performing methods are complex en-
semble systems that typically combine multiple low-level
image features with high-level context. In this paper, we
propose a simple and scalable detection algorithm that im-
proves mean average precision (mAP) by more than 30%
relative to the previous best result on VOC 2012—achieving
a mAP of 53.3%. Our approach combines two key insights:
(1) one can apply high-capacity convolutional neural net-
works (CNNs) to bottom-up region proposals in order to
localize and segment objects and (2) when labeled training
data is scarce, supervised pre-training for an auxiliary task,
followed by domain-specific fine-tuning, yields a signifi-
cant performance boost. Since we combine region propos-
als with CNNs, we call our method R-CNN: Regions with
CNN features. We also present experiments that provide
insight into what the network learns, revealing a rich hier-
archy of image features. Source code for the complete sys-
tem is available at http://www.cs.berkeley.edu/
˜rbg/rcnn.

1. Introduction

Features matter. The last decade of progress on various
visual recognition tasks has been based considerably on the
use of SIFT [27] and HOG [7]. But if we look at perfor-
mance on the canonical visual recognition task, PASCAL
VOC object detection [13], it is generally acknowledged
that progress has been slow during 2010-2012, with small
gains obtained by building ensemble systems and employ-
ing minor variants of successful methods.

SIFT and HOG are blockwise orientation histograms,
a representation we could associate roughly with complex
cells in V1, the first cortical area in the primate visual path-
way. But we also know that recognition occurs several
stages downstream, which suggests that there might be hier-
archical, multi-stage processes for computing features that
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Figure 1: Object detection system overview. Our system (1)
takes an input image, (2) extracts around 2000 bottom-up region
proposals, (3) computes features for each proposal using a large
convolutional neural network (CNN), and then (4) classifies each
region using class-specific linear SVMs. R-CNN achieves a mean
average precision (mAP) of 53.7% on PASCAL VOC 2010. For
comparison, [34] reports 35.1% mAP using the same region pro-
posals, but with a spatial pyramid and bag-of-visual-words ap-
proach. The popular deformable part models perform at 33.4%.

are even more informative for visual recognition.
Fukushima’s “neocognitron” [17], a biologically-

inspired hierarchical and shift-invariant model for pattern
recognition, was an early attempt at just such a process.
The neocognitron, however, lacked a supervised training al-
gorithm. LeCun et al. [24] provided the missing algorithm
by showing that stochastic gradient descent, via backprop-
agation, can train convolutional neural networks (CNNs), a
class of models that extend the neocognitron.

CNNs saw heavy use in the 1990s (e.g., [25]), but then
fell out of fashion, particularly in computer vision, with the
rise of support vector machines. In 2012, Krizhevsky et al.
[23] rekindled interest in CNNs by showing substantially
higher image classification accuracy on the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [9, 10].
Their success resulted from training a large CNN on 1.2
million labeled images, together with a few twists on Le-
Cun’s CNN (e.g., max(x, 0) rectifying non-linearities and
“dropout” regularization).

The significance of the ImageNet result was vigorously
debated during the ILSVRC 2012 workshop. The central
issue can be distilled to the following: To what extent do
the CNN classification results on ImageNet generalize to
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q Given: existing  boxes                                                                            and  their  
detection  scores ,  say,                                                          .

q Framework: wemodel using the Bayesian framework:

q Goal: To  find  a  new  box                    that  maximizes  the  chance of  
improving  the  detection  score,  i.e.,                  .
where  the  chance  is  measured  by  expected  improvement:

q Iterations:  

b.  General  Bayesian  optimization

c.  Region  proposal  via  Gaussian  process  regression
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q The  prior                  is  defined  as  a  Gaussian  process  (GP)
• Formally  

q is  a  constant  mean,                    is  a  squared  exponential  covariance.  
q is  scale-invariant,  as  a  latent  scaling  factor        is  incorporated.  

It  is  determined  by  maximizing  the  likelihood of  existing  observations,  

q The  expected  improvement  (EI)  and  its  gradients  are  in  closed  forms.  

d.  Control  experiments:  FGS  with  an  Oracle  detector

a.  mAP on  VOC  2007  &  2012  test  set

Model BBoxReg aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
R-CNN (AlexNet) No 68.1 63.8 46.1 29.4 27.9 56.6 57.0 65.9 26.5 48.7 39.5 66.2 57.3 65.4 53.2 26.2 54.5 38.1 50.6 51.6 49.6
R-CNN (VGGNet) No 76.3 69.8 57.9 40.2 37.2 64.0 63.7 80.2 36.1 63.6 47.3 81.1 71.2 73.8 59.5 30.9 64.2 52.2 62.4 58.7 59.5
R-CNN (AlexNet) Yes 71.8 65.8 52.0 34.1 32.6 59.6 60.0 69.8 27.6 52.0 41.7 69.6 61.3 68.3 57.8 29.6 57.8 40.9 59.3 54.1 53.3
R-CNN (VGGNet) Yes 79.2 72.3 62.9 43.7 45.1 67.7 66.7 83.0 39.3 66.2 51.7 82.2 73.2 76.5 64.2 33.7 66.7 56.1 68.3 61.0 63.0
+ StructObj Yes 80.9 74.8 62.7 42.6 46.2 70.2 68.6 84.0 42.2 68.2 54.1 82.2 74.2 79.8 66.6 39.3 67.6 61.0 71.3 65.2 65.1
+ FGS Yes 80.5 73.5 64.1 45.3 48.7 66.5 68.3 82.8 39.8 68.2 52.7 82.1 75.1 76.6 66.3 35.5 66.9 56.8 68.7 61.6 64.0
+ StructObj + FGS Yes 82.9 76.1 64.1 44.6 49.4 70.3 71.2 84.6 42.7 68.6 55.8 82.7 77.1 79.9 68.7 41.4 69.0 60.0 72.0 66.2 66.4
NIN [29] - 80.2 73.8 61.9 43.7 43.0 70.3 67.6 80.7 41.9 69.7 51.7 78.2 75.2 76.9 65.1 38.6 68.3 58.0 68.7 63.3 63.8

Table 3: Test set mAP of VOC 2012 with IoU > 0.5. The entries with the best APs for each object category are bold-faced.
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Figure 3: Detection examples from PASCAL VOC 2007 test set. Two examples from 20 object categories are shown, with
the ground truth bounding boxes (green), the boxes obtained by baseline R-CNN (VGGNet) (red), and those obtained by the
proposed R-CNN + StructObj + FGS (yellow). The numbers near the bounding boxes denote the IoU with the ground truth.

proves by 0.7% in mAP over the method without finetuning.
However, the overall improvement due to finetuning was
small, especially when compared to “FGS+StructObj” with
bounding box regression for IoU>0.5 criterion. In this case,
considering the high computational cost for finetuning, we
found that training only the classification layer is practically
a sufficient way to learn a good localization-aware classifier.

We provide in-depth analysis of our proposed methods
in the supplementary materials. Specifically, we report the
precision-recall curves of different combinations of the pro-
posed methods (Sec. S7), the performance of FGS with dif-
ferent GP iterations (Sec. S5), the analysis of localization
accuracy (Sec. S8), and more detection examples.

5.3. PASCAL VOC 2012
We also evaluate the performance of the proposed meth-

ods on PASCAL VOC 2012 [14]. As the data statistics are
similar to VOC 2007, we used the same hyperparameters as
described in Section 5.2 for this experiment. We report the
test set mAP over 20 object categories in Table 3. Our pro-
posed method shows improvement by 2.1% with R-CNN +
StructObj and 1.0% with R-CNN + FGS over baseline R-
CNN using VGGNet. Finally, we obtained 66.4% mAP by
combining the two methods, which significantly improved

upon the baseline R-CNN model and the previously pub-
lished results on the leaderboard.

6. Conclusion
In this work, we proposed two complementary meth-

ods to improve the performance of object detection in R-
CNN framework with 1) fine-grained search algorithm in a
Bayesian optimization framework to refine the region pro-
posals and 2) a CNN classifier trained with structured SVM
objective to improve localization. We demonstrated the
state-of-the-art detection performance on PASCAL VOC
2007 and 2012 benchmarks under standard localization re-
quirements. Our methods showed more significant im-
provement with higher IoU evaluation criteria (e.g., IoU
= 0.7), and hold promise for mission-critical applications
that require highly precise localization, such as autonomous
driving, robotic surgery and manipulation.
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Figure 1: Pipeline of our method.

Motivated by the recent breakthrough of deep convolutional neural networks
(CNN) on large scale visual object recognition tasks [3], Girshick et al. [2]
proposed the “regions with CNN” (R-CNN) framework for object detection
and demonstrated state-of-the-art performance on standard detection bench-
marks with a large margin to the previous arts, which are mostly based on
deformable part models (DPM). While the features learned by high-capacity
neural networks are discriminative for categorization, inaccurate localiza-
tion is still a major source of error for detection.

In this work, we address the localization difficulty of R-CNN detection
framework with two ideas. First, we develop a fine-grained search algorithm
to expand an initial set of bounding boxes by proposing new bounding boxes
with scores that are likely to be higher than the initial ones. We build our
algorithm in the Bayesian optimization framework [5]. Second, we train
a CNN classifier with a structured SVM objective that aims at classifica-
tion and localization simultaneously. We define the structured SVM layer
of the CNN whose objective function is defined with a hinge loss that bal-
ances between classification (i.e., determines whether an object exists) and
localization (i.e., determines how much it overlaps with the ground truth).

Fine-grained search (FGS) via Bayesian optimization Let f (x,y) de-
note a detection score function of an image x at region defined with the
bounding box coordinates y = (u1,v1,u2,v2) 2 Y . The object detection
problem is to find the local maximum of f (x,y) with respect to y of an
unseen image x.

Let {y1, · · · ,yN

} be the set of solutions (e.g., bounding boxes). In the
Bayesian framework,

p( f |D
N

) µ p(D
N

| f ) p( f ), (1)

where D
N

= {(y
j

, f

j

)}N

j=1 and f

j

= f (x,y
j

). Here, the goal is to find a new
solution y

N+1 that maximizes the chance of improving the detection score
f

N+1, where the chance is defined as an acquisition function a(y
N+1|DN

)
(e.g., expected improvement). Specificially, p(x) is defined as a Gaussian
process (GP), and p(y

N+1|,xN+1DN+1) can be obtained by GP regression.
The algorithm proceeds by recursively sampling a new solution y

N+t

from D
N+(t�1), and update the set D

N+t

= D
N+(t�1) [ {y

N+t

} to draw a
new sample solution y

N+(t+1) with an updated observation.
As it is shown in Figure 1, our pipeline is: 1) Initial bounding boxes

are given by methods such as the selective search [6] and their detection

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

mean Average Precision VOC 2007 VOC 2012
Model BBoxReg IoU� 0.5 IoU� 0.7 IoU� 0.5
R-CNN (AlexNet) No 54.2 26.6 49.6
R-CNN (VGGNet) No 60.6 30.8 59.5
+ StructObj No 61.2 31.0 -
+ StructObj-FT No 62.3 33.2 -
+ FGS No 64.8 37.4 -
+ StructObj + FGS No 65.9 37.2 -
+ StructObj-FT + FGS No 66.5 39.8 -
R-CNN (AlexNet) Yes 58.5 35.2 53.3
R-CNN (VGGNet) Yes 65.4 35.2 63.0
+ StructObj Yes 66.6 40.5 65.1
+ StructObj-FT Yes 66.9 41.8 -
+ FGS Yes 67.2 42.7 64.0
+ StructObj + FGS Yes 68.5 43.0 66.4

+ StructObj-FT + FGS Yes 68.4 43.7 -

Table 1: Test set mAPs on PASCAL VOC 2007 and VOC 2012
scores are obtained from the CNN-based classifier trained with structured
SVM objective. 2) The box(es) with optimal score(s) in the local regions are
selected by greedy NMS [2], and Bayesian optimization takes the resulting
neighborhood of each local optimum to propose a new box with high chance
of getting a better score. 3) We evaluate the detection score of the new box
and take it as an observation to move to next step until convergence. 4)
All the bounding boxes are fed into the standard post-processing stage (e.g.,
threshold and NMS, etc.).

Learning R-CNN with structured loss Suppose the top layer of the CNN
is a linear classifier f (x,y;w) = w

T f(x,y), where f(x,y) denotes the CNN
features from the previous layer. Following Blaschko and Lampert [1], we
formulate the classifier learning as a structured SVM problem, where the
structured loss penalizes both the classification and localization errors. In
contrast to their solution, we restrict the output space to regions proposed
via selective search, and transform the constraints into hinge loss to make
the objective function backpropagatable through the CNN. We alternately
perform a gradient-based parameter estimation and hard negative data min-
ing that effectively adapts the number of training examples to be evaluated
for updating the parameters. For model parameter estimation, we use L-
BFGS to first learn parameters of the classification layer only (StructObj) .
We found that this already resulted in a good detection performance. Then,
we optionally use stochastic gradient descent to finetune the whole CNN
classifier (StructObj-FT).

Experimental Results In Table 1, we demonstrated that each of the pro-
posed methods improves the detection performance over the baseline method
(R-CNN with VGGNet [4]) on PASCAL VOC 2007 and 2012 datasets. Fur-
thermore, two methods are complementary and significantly outperform the
previous state-of-the-art when combined.
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# GP iter 0 1 2 3 4 5 6 7 8
mAP 66.6 67.5 67.8 68.2 68.3 68.6 68.4 68.6 68.5

Table S-1: Test set mAPs on PASCAL VOC 2007 for “R-CNN(VGG)+StructObj+FGS+BBoxReg” with different number of
GP iterations

performed similar experiments using a real detector trained with structured SVM objective based on VGGNet features. The
summary results are given in Table S-2 and S-3.

Region proposal methods \ IoU threshold 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

SS (⇠2000 boxes per image) 74.3 73.8 72.5 69.6 61.2 47.4 31.2 15.4

SS + Objectness (⇠3000 boxes per image) 73.4 72.9 71.7 68.9 60.6 47.0 31.1 15.3

SS extended (⇠3500 boxes per image) 74.3 73.9 72.8 70.1 62.8 48.5 32.3 15.9

SS quality (⇠10000 boxes per image) 74.1 73.7 72.7 70.0 63.7 51.4 35.7 17.9
SS + FGS (⇠2150 boxes per image) 76.6 76.1 75.0 72.4 65.8 54.1 37.2 17.4

Table S-2: Test set mAPs on PASCAL VOC 2007 with different region proposal methods at varying IoU thresholds from 0.1

to 0.8 without bounding box regression.

Region proposal methods \ IoU threshold 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

SS (⇠2000 boxes per image) 77.4 76.9 75.9 73.4 66.5 55.8 40.9 19.4

SS + Objectness (⇠3000 boxes per image) 76.9 76.5 75.5 73.0 66.0 55.2 40.4 19.3

SS extended (⇠3500 boxes per image) 77.6 77.2 76.2 73.8 67.6 57.0 41.8 19.7

SS quality (⇠10000 boxes per image) 77.1 76.7 75.8 73.3 67.1 57.0 42.3 19.4

SS + FGS (⇠2150 boxes per image) 78.3 77.8 76.8 74.4 68.5 57.9 43.1 20.4

Table S-3: Test set mAPs on PASCAL VOC 2007 with different region proposal methods at varying IoU thresholds from 0.1

to 0.8 with bounding box regression.

For both cases (with and without bounding box regression), the FGS showed improved performance over other region
proposal methods using smaller number of region proposals. In particular, the SS + FGS method (row 5 in Table S-2 and S-3)
even outperformed the SS “quality” mode [9], which requires ⇠ 5⇥ more computational expenses than our proposed method
to compute CNN-based detection scores for bounding box proposals.

Although the current state-of-the-art CNN-based detector outperforms other object detection methods [3, 7, 2] by a large
margin, there still remains a significant gap with that of the hypothetical oracle detector. This motivates us to further research
on improving the quality of the CNNs for better visual object recognition performance.

S7. Precision-recall curves on PASCAL VOC 2007
In this section, we present the precision-recall curves for four different models. Specifically, we show results for VGGNet,

VGGNet trained with structured SVM objective (VGGNet + StructObj), VGGNet with FGS (VGGNet + FGS), and VGGNet
with both (VGGNet + StructObj + FGS) in Figure S-2. In general, the improvement from the structured SVM objective is
more significant for the high recall range (i.e., recall � 0.5) than the low recall range other than “sheep” class. FGS usually
improves the precision for most object categories.
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R-CNN (VGGNet) + StructObj + FGS on VOC 2007: 
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q Training  set:

• is  the     th image,  and          is  its  box  annotation  (if  applicable).
q Linear  classifier:

q Structured  objective:

where .                                    :  pos /  neg indexes.
q Gradient  descent  using                            (boxes  sampled  by  selective  search).

L-BFGS  for  classification  layer  only  learning,  SGD  for  fine-tuning.
q Hard  negative  mining  is  necessary  to  make  the  training  practical.
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Get  code  &  models:  http://bit.ly/fgs-obj

q Image      ,  bounding  box ,  score  function    .  
q Detection  is  to  locally  (non-maximum  suppression)  find  

q Ideally,                            is  continuous.
q In  practice, consists  of  boxes  sampled    
• densely  in  a  grid  (sliding  window) or  
• sparsely  according  to  segmentations  (region  proposal).

a.  Detection  framework

c.  FGS  efficiency

Model BBoxReg aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
R-CNN (AlexNet) No 68.1 63.8 46.1 29.4 27.9 56.6 57.0 65.9 26.5 48.7 39.5 66.2 57.3 65.4 53.2 26.2 54.5 38.1 50.6 51.6 49.6
R-CNN (VGGNet) No 76.3 69.8 57.9 40.2 37.2 64.0 63.7 80.2 36.1 63.6 47.3 81.1 71.2 73.8 59.5 30.9 64.2 52.2 62.4 58.7 59.5
R-CNN (AlexNet) Yes 71.8 65.8 52.0 34.1 32.6 59.6 60.0 69.8 27.6 52.0 41.7 69.6 61.3 68.3 57.8 29.6 57.8 40.9 59.3 54.1 53.3
R-CNN (VGGNet) Yes 79.2 72.3 62.9 43.7 45.1 67.7 66.7 83.0 39.3 66.2 51.7 82.2 73.2 76.5 64.2 33.7 66.7 56.1 68.3 61.0 63.0
+ StructObj Yes 80.9 74.8 62.7 42.6 46.2 70.2 68.6 84.0 42.2 68.2 54.1 82.2 74.2 79.8 66.6 39.3 67.6 61.0 71.3 65.2 65.1
+ FGS Yes 80.5 73.5 64.1 45.3 48.7 66.5 68.3 82.8 39.8 68.2 52.7 82.1 75.1 76.6 66.3 35.5 66.9 56.8 68.7 61.6 64.0
+ StructObj + FGS Yes 82.9 76.1 64.1 44.6 49.4 70.3 71.2 84.6 42.7 68.6 55.8 82.7 77.1 79.9 68.7 41.4 69.0 60.0 72.0 66.2 66.4
NIN [29] - 80.2 73.8 61.9 43.7 43.0 70.3 67.6 80.7 41.9 69.7 51.7 78.2 75.2 76.9 65.1 38.6 68.3 58.0 68.7 63.3 63.8

Table 3: Test set mAP of VOC 2012 with IoU > 0.5. The entries with the best APs for each object category are bold-faced.
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Figure 3: Detection examples from PASCAL VOC 2007 test set. Two examples from 20 object categories are shown, with
the ground truth bounding boxes (green), the boxes obtained by baseline R-CNN (VGGNet) (red), and those obtained by the
proposed R-CNN + StructObj + FGS (yellow). The numbers near the bounding boxes denote the IoU with the ground truth.

proves by 0.7% in mAP over the method without finetuning.
However, the overall improvement due to finetuning was
small, especially when compared to “FGS+StructObj” with
bounding box regression for IoU>0.5 criterion. In this case,
considering the high computational cost for finetuning, we
found that training only the classification layer is practically
a sufficient way to learn a good localization-aware classifier.

We provide in-depth analysis of our proposed methods
in the supplementary materials. Specifically, we report the
precision-recall curves of different combinations of the pro-
posed methods (Sec. S7), the performance of FGS with dif-
ferent GP iterations (Sec. S5), the analysis of localization
accuracy (Sec. S8), and more detection examples.

5.3. PASCAL VOC 2012
We also evaluate the performance of the proposed meth-

ods on PASCAL VOC 2012 [14]. As the data statistics are
similar to VOC 2007, we used the same hyperparameters as
described in Section 5.2 for this experiment. We report the
test set mAP over 20 object categories in Table 3. Our pro-
posed method shows improvement by 2.1% with R-CNN +
StructObj and 1.0% with R-CNN + FGS over baseline R-
CNN using VGGNet. Finally, we obtained 66.4% mAP by
combining the two methods, which significantly improved

upon the baseline R-CNN model and the previously pub-
lished results on the leaderboard.

6. Conclusion
In this work, we proposed two complementary meth-

ods to improve the performance of object detection in R-
CNN framework with 1) fine-grained search algorithm in a
Bayesian optimization framework to refine the region pro-
posals and 2) a CNN classifier trained with structured SVM
objective to improve localization. We demonstrated the
state-of-the-art detection performance on PASCAL VOC
2007 and 2012 benchmarks under standard localization re-
quirements. Our methods showed more significant im-
provement with higher IoU evaluation criteria (e.g., IoU
= 0.7), and hold promise for mission-critical applications
that require highly precise localization, such as autonomous
driving, robotic surgery and manipulation.
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c.  Localization  accuracy  on  VOC  2007  test  set
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