
1

Accelerometer-based Gait Recognition by Sparse
Representation of Signature Points with Clusters

Yuting Zhang, Gang Pan*, Kui Jia, Minlong Lu, Yueming Wang, Zhaohui Wu

Abstract—Gait, as a promising biometric for recognizing

human identities, can be non-intrusively captured as series of

acceleration signals using wearable or portable smart devices.

It can be used for access control. Most existing methods on

accelerometer-based gait recognition require explicit step-cycle

detection, suffering from cycle detection failures and inter-cycle

phase misalignment. We propose a novel algorithm that avoids

both the above two problems. It makes use of a type of salient

points termed Signature Points (SPs), and has three components:

(1) a multi-scale SP extraction method, including the localization

and SP descriptors; (2) a sparse representation scheme for

encoding newly emerged SPs with known ones in terms of their

descriptors, where the phase propinquity of the SPs in a cluster

is leveraged to ensure the physical meaningfulness of the codes;

and, (3) a classifier for the sparse-code collections associated with

the SPs of a series. Experimental results on our publicly available

dataset of 175 subjects showed that our algorithm outperformed

existing methods, even if the step cycles were perfectly detected

for them. When the accelerometers at 5 different body locations

were used together, it achieved the rank-1 accuracy of 95.8% for

identification, and the equal error rate of 2.2% for verification.

Index Terms—accelerometers, biometrics, gait recognition, sig-

nature points, sparse representation, gait dataset

I. INTRODUCTION

I

N recent years, the portable and wearable devices with
smartness have greatly interested the industrial worlds.

Manufacturers have incorporated additional computing ca-
pacity and various sensors (e.g., GPS [1] and accelerom-
eters) into cellphones, watches, shoes, clothes, and other
portable/wearable items, which makes a world of pervasive
computing possible [2].

With built-in accelerometers, these items can be aware of the
body motion of users, which inspired the academic interest in
using the motion characters of human body for various tasks,
including clinical condition monitoring [3], action/gesture cat-
egorization [4], [5], [6], and identity recognition. In particular,
accelerometer-based identity recognition using body motion is
promising in preventing the misuse of smart devices and the
systems linked with them.
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Since walking is a daily activity, human gait can be mea-
sured in daily life without explicitly asking the subjects to
walk. This fact distinguishes gait from other accelerometer-
measurable actions, like gestures, as well as other commonly
used biometrics, such as fingerprints, signatures, and face
photos, whose acquisition usually interrupts the subjects from
normal activities for explicit participation.

The intrusiveness of measuring gait makes gait favorable
for user-friendly identity recognition. In particular, as portable
or wearable accelerometers can monitor gait continuously at
arbitrary time, accelerometer-based gait recognition would be
especially well in continuous identity re-verification [7], which
may help secure the access to sensitive carry-on items like
cellphones and car keys (provided they are smart).

It is true that gait can be monitored through media other
than accelerometers, e.g., distant camera, gyroscopes [8], [9],
foot pressure sensors [10], [11], and step sound recorders [12].
Among gait recognition methods relying on various media,
those based on camera vision were intensively researched [13],
[14], [15], [16], [17], [18] in the past decade.

Compared with camera-based and other non-accelerometer-
based gait measurements, acceleration can reflect the dynamics
of gait more directly and faithfully. Indeed, accelerometer-
based gait recognition do not suffer from the long-term exist-
ing problems for vision-based methods, like occlusions, clutter,
3D viewpoint changes, illumination variations, and appearance
alternations, as well as other perceptual distortions.

Most existing methods for accelerometer-based gait recog-
nition detect step cycles, and correspond acceleration signals
in different cycles, usually by linear warping. This paradigm
has two main drawbacks: 1) cycle detection methods are
usually error-prone, making the recognition methods fragile
to occasional abnormalities like temporary walking pauses.
2) most methods ignore the inter-cycle phase misalignment,
which in fact widely exists in gait acceleration data.

To remedy the inter-cycle phase misalignment problem,
some methods explicitly align the step cycles by Dynamic
Time Warping (DTW) [19], [20]. However, their performance
is limited by their dependency on cycle detection and the
instability of unconstrained DTW. Alternatively, Pan et al. [21]
extracted a particular kind of salient points termed Signature
Points (SPs) on gait acceleration series, and avoided the inter-
cycle misalignment problem by SP matching. While setting
forth a promising direction, Pan et al.’s method still requires
cycle detection, as it uses the relative location within step cycle
for constraining the matching problem.

In this paper, we propose a novel accelerometer-based gait
recognition method, which avoids cycle detection and the
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inter-cycle misalignment problem. In particular, we improve
the existing algorithm of SP localization and descriptors [21]
by a multi-scale extension, and represent a gait acceleration
series by a rich collection of SPs. We cluster the SPs from all
the gallery series according to the similarity of their descrip-
tors, and illustrate the phase propinquity of the SPs within
a cluster. Given a probe gait acceleration series, we encode
every of its SPs, in terms of the SP descriptor, as a sparse
linear combination of the SPs from all the gallery series. In this
step we constrain the code to concentrate only in the gallery
cluster(s) that is/are most similar to the descriptor of the SP to
be encoded. We will demonstrate later that this constraint can
implicitly force an SP to be encoded with those whose phases
are close to it, which makes the obtained code physically
meaningful. After that, we recognize the probe series by a
novel Classifier for Sparse-Code Collection (termed CSCC),
where we incorporate the subject-wise reconstruction errors of
each SP into a probabilistic framework, and formulate CSCC
as a problem of maximum a posteriori (MAP) estimation.
Finally, we generalize our method for multiple accelerometers.

We built a dataset called ZJU-GaitAcc, which, to the best
of our knowledge, is the first publicly available dataset of gait
acceleration series for identity recognition. Experimental re-
sults on ZJU-GaitAcc demonstrated that the proposed method
outperformed existing methods and achieved significant per-
formance increase with more accelerometers.

We summarize the main contributions of this paper:
1) We develop the multi-scale SP extraction method, and

obtain a rich and stable feature collection representation
of gait acceleration series.

2) We designed a sparse coding scheme to obtain physically
meaningful sparse representation of SPs.

3) We propose CSCC to recognize gait acceleration series
represented by SP collections. It avoids cycle detection,
and is ready for the multi-accelerometer scenario.

4) We publish the ZJU-GaitAcc dataset, which covers 175
subjects and 5 body locations.

In the rest of this paper, we review previous work (Sec-
tion II), develop the SP extraction method together with show-
ing the phase propinquity related to SP clusters (Section III),
present the SP encoding scheme and CSCC (Section IV),
describe the ZJU-GaitAcc dataset (Section V), and report
experimental results (Section VI).

II. PREVIOUS WORK

Gait recognition using accelerometers is a newly emerged
topic. It was first touched by Morris [36] and then formally
addressed by Mäntyjärivi et al. [22]. Now, more and more
pieces of work have focused on this topic. Some early methods
processed data in the frequency domain [22], [26], [31] or used
the histograms of entire acceleration series [22], [24], [25],
[27]. Later, they were largely surpassed by methods making
direct use of original series in the time domain.

According to the ways for handling step cycles, we cate-
gorize most existing time-domain methods into 3 types: cycle
comparison based on length normalization, cycle comparison
by alignment, and methods without cycle comparison. They
are summarized in Table I, and reviewed in the following.

Cycle comparison by length normalization: Mäntyjärivi
et al. [22] and Ailisto et al. [23] measured the similarity
between two gait acceleration series recorded at waists by
the linear correlation between the averaged step cycles of
the two series. To obtain the averaged step cycle of a series,
all the step cycles are detected and normalized to the same
length (dimensions). Vildjiounaite et al. [26] used a similar
method for recognizing gait acceleration series collected at
hands, breast pockets or hip pockets. In these algorithms, the
cycle detection methods cannot distinguish the left and the
right steps, so two averaged half (left/right) cycles with an
odd/even parity are computed for a series. This character is
referred to as “avg. step” in Table I.

The above methods induced a widely used algorithm frame-
work based on normalizing the length of step cycles: 1) de-
tecting step cycles; 2) normalizing the length of each cycle
so that all the cycles have the identical number of samples;
3) constructing cycle templates for gait acceleration series;
4) recognizing gait by cycle template comparisons.

Gafurov et al. [24], [25], [27] followed this framework, and
averaged full cycles (a left and a right step) in a series to
be the cycle template, which we refer to as “avg. cycle” in
Table I. They recorded gait acceleration at waists or ankles,
and investigated different averaging methods and metrics for
template comparisons. Gafurov et al. [37], [38] also studied the
robustness of their algorithms against impersonation attacks.

Recently, more sophisticated methods were proposed for
cycle comparison based on length normalization. Inspired by
the famous “eigenface” method [39] for face recognition,
Bours et al. [28] used “eigenstep” representation to improve
the recognition accuracy. Cycle template similarity is com-
puted in the low-dimensional subspace obtained by Principle
Component Analysis (PCA). Gafurov et al. [29] compared
all the step cycles between two series (referred to as “cycle
matching”) instead of using the average cycles. Juefei-Xu et
al. [30] took the inter-cycle variance as the cycle template.

In the aforementioned methods, the cycle-length normal-
ization is done by linear interpolation, which appears to
be effective as Juefei-Xu et al. [30] argued. However, as
previously discussed in Section I, the inter-cycle misalignment
cannot be sufficiently corrected by linear interpolation.

Cycle comparison by alignment: To solve the inter-cycle
misalignment problem, Liu et al. [19], [31] and Derawi et
al. [20] used DTW to explicitly align the acceleration in
different step cycles. Derawi et al. [32] made further improve-
ment by integrating cyclic rotation metric (CRM) and cycle
matching scheme. One drawback of these methods is that
DTW might warp the series too much so that the series loses
its discriminative patterns. To register the gallery step cycles
in a more stable way, Trung et al. [33] used Self-DTW [40]
to assign every sample in a series with an aligned phase,
and presented a regularization method to reduce unwanted
warping. Unfortunately, as they used DTW for step-cycle
comparison in the test stage, the only contribution of the
gallery registration seems to be cycle detection. After all,
alignment/warping does not affect the DTW distance.

Methods without cycle comparison: Pan et al.’s
method [21] avoided explicit phase registration. It extracted
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Table I: Some related work on accelerometer-based gait recognition methods.

Method Type Year Studies Locations RR EER #Subj. Characteristics

Cycle comparison
based on length
normalization

2005 Mäntyjärivi et al. [22] Waist / 7.0% 36 Avg. step, corr.
2005 Ailisto et al. [23] Waist / 6.4% 36 Avg. step, corr.

2006 Gafurov et al. [24], [25] Waist / 9% 21 Avg. cycle, p-value
in t-test

2006 Vildjiounaite et al. [26] Hand / 17.2% 31 Avg. step, corr.
Breast pocket / 14.8% 31
Hip pocket / 14.1% 31

2007 Gafurov et al. [27] Trouser pocket 86.3% 7.3% 50 Avg. cycle, L1 dist.
2010 Bours et al. [28] Left hip / 1.6% 60 Eigenstep (PCA)
2010 Gafurov et al. [29] Ankle / a16.4% 30 Cycle matching
2012 Juefei-Xu et al. [30] Right pocket / 3.6% 36 Variance as feature

Cycle comparison
by alignment

2007 Liu et al. [19] Waist / 6.7% 35 DTW
2007 Liu et al. [31] Waist / 5.6% 21 DTW, avg. cycle
2010 Derawi et al. [20] Trouser pocket / 20.1% 51 DTW, avg. cycle

2010 Derawi et al. [32] Left leg / 5.7% 60 Cycle matching,
DTW, CRM

2011 Trung et al. [33] Back bag / 6.0% 32 Self-DTW, cycle
matching, CRM

2012 Trung et al. [34] Waist / b10% 736 the same as above

Methods without
cycle comparison

2009 Pan et al. [21] Wrist, upper arm,
hip, knee, ankle 96.7% / 30 SP, NN, voting

scheme
2012 Nickel et al. [35] Trouser pocket / c10.3% 48 HMM

2013 This paper Wrist, upper arm,
hip, knee, ankle 95.8% 2.2% 175 SP, sparse coding,

CSCC
Remarks: RR – recognition rate (or, rank-1 accuracy, for identification); EER – equal error rate (for verification); #Subj – the
number of subjects. a. a typical result in [29]; b. approximated from the ROC curve reported in [34]; c. approximated from
the reported FNR (10.42%) and FPR (10.29%).

SPs on acceleration series, labeled the SPs on a probe series,
and predicted its identity by the SP labels. In particular,
they labeled SPs by the Nearest Neighbor (NN) classifier
constrained by the propinquity of SPs’ unregistered phases.

One common bottleneck for cycle-comparison methods and
Pan et al.’s method [21] is the dependence on cycle detection.
Although endeavors have been made to improve the robustness
of cycle detection techniques [32], [41], they might still fail
in some cases. Nickel et al. [35] performed HMM on signal
segments with a fixed length, which did not need cycle
detection. However, however ignored the misalignment among
segments. Fortunately, our algorithm proposed in this paper
both stays away from cycle detection and avoids the problem
of inter-cycle misalignment.

III. SIGNATURE POINTS (SPS): FEATURE COLLECTIONS OF
GAIT ACCELERATION SERIES

Gait is the motion of a walking body, whose dynamics
can be faithfully reflected by the acceleration of body sec-
tions. We measure it at specific body locations by wearable
accelerometers with 3 orthogonal sensing directions. The ob-
tained acceleration can be featured with its magnitude, one
of its x, y, z components, the included angle between two
components, etc. To get the invariance against the orientation
changes of accelerometers, we use the acceleration magnitude,
and the acceleration measured a one body location constitute
a scalar time series.

Let a(t) 2 R be the function representing a gait acceleration
series. We localize SPs at informative localities of a(t)’s scale-
space, attach them with local descriptors, and represent a(t)
as a collection of SPs. Unlike Pan et al. [21], we do not limit
SPs in a single scale, so the SPs would be richer in quantity
and robust to minor walking speed variations.

A. SP extraction – localization and descriptors
Like Pan et al. [21], we localize the SPs of a(t) at the

extrema of a(t)’s difference of Gaussian (DoG) pyramid.
These extrema are shown to be stable, scale-invariant, and at
informative localities [42].

Let us write G�(t) for the zero-mean Gaussian function
with variance �

2, say,

G�(t) =
1p
2⇡�

exp

✓
� t

2

2�

2

◆
, (1)

The DoG function can be written as

D

�
�(t) = G��(t)�G�(t), (2)

where � > 1 (here simply, = 2) is the multiplicative factor.
The DoG responses of a(t) is then denoted by

b(t,�) = (a ⇤D�
�)(t), (3)

where “⇤” denotes convolution, and � is constant. We localize
the SPs of a(t) at the extrema of b(t,�). In practice, we also
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(a) SPs on different step cycles (b) SP descriptors (h = 21)

Figure 1: SPs extracted from different step cycles in a gait
acceleration series of one subject recorded at the right ankle.
a) The green dots with red circles indicate the locations of
SPs. The green horizontal lines attached with them suggest the
scales of SPs. In each step cycle, 3 SPs are marked with nota-
tions. For i = 1, 2, 3, the SPs (t

1
i ,�

1
i ), (t

2
i ,�

2
i ), . . . , (t

N
i ,�

N
i )

are corresponded because they are at the same cycle phase
in different step cycles. b) The descriptors of the marked SPs
are shown. The corresponding SPs in different step cycles have
similar descriptors.

consider the natural blur of the series a1, and replace D

�
� with

D

�
���N

in (3), where �N is the scale for the natural blur.
Instead of continuously searching b(t,�), we find extrema

in an ⌧ -layer pyramid of discrete series

b[t, i] = b(t, �

i�1
�0) for i = 1, 2, . . . , ⌧, (4)

where t is the discrete time stamp, i is the layer index, and
�0 is the base scale. We can efficiently compute b[t, i] as the
difference of the Gaussian pyramid with scales {�i

�0}⌧i=0.
Any point that is simultaneously greater or smaller than its
eight neighbors is taken as an extremum of b[t, i]. Let (t, i)

be an extremum of b[t, i]. We locate the corresponding SP
in b(t,�) at (t, �

i�1
�0). To improve the stability of SP

localization, we will reject the above SP if |b[t, i]| is too small.
Fig. 1a gives an illustration of SPs.

The time-domain neighborhoods of SPs have locally high
contrast. We define the descriptor of an SP at (t,�) by its
neighborhood in the time domain as

⇥(t,�) =

(✓1, ✓2, . . . , ✓h)
T

k(✓1, ✓2, . . . , ✓h)k2
2 Rh

, (5)

where ✓i = (a ⇤G�)
�
t+

�
i� h+1

2

�
�"

�
.

It uniformly samples h points around t from the �-scale of
a(t), i.e. a(t)’s response to G�(t), with the scale-dependent

1Due to the precision limitation of the sensor, the series are often blurred
by nature. We use a Gaussian filter with a small variance to model this effect.
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Figure 2: SPs in clusters. SPs were extracted from the gait
acceleration series of 20 subjects recorded at right ankles, and
were grouped into 9 clusters, where each cluster associates
with a distinct color.

interval �", and normalizes the obtained vector to unit length.
The SP descriptor has invariance to both scale and amplitude
changes, which would together contribute to its robustness
against walking speed variations. In Fig. 1b, we show some
SP descriptors. Now, we represent a gait acceleration series
by the extracted SP collection.

B. Phase propinquity of SPs in a cluster
SPs can be grouped into clusters according to the similarity

of their descriptors, where each cluster associates with a type
of similar acceleration patterns. As it is shown in Fig. 2a, the
SPs in a cluster are usually close to each other in terms of
their cycle phase. We term this property as phase propinquity.
Fig. 2b shows the estimated Probability Distribution Function
(PDF) of the phases of the SPs in different clusters. Except
for some subsidiary peaks, the distribution for one cluster
mainly concentrates in a small phase interval, which gives
more evidence for the phase propinquity. Although the phases
are not registered between cycles, the phase propinquity still
indicates that the majority of the SPs in a cluster describe the
same stage of gait motion.

The phase propinquity is intuitive for the SPs of the same
subject. For one subject, the gait patterns are generally con-
sistent among different step cycles. The acceleration patterns
at nearby step-cycle phases are similar, and those in distant
phases are likely be different (Fig. 1a). As the SP descriptors
are actually temporal context around SPs, the SPs located at
close step-cycle phases are likely to be grouped into the same
cluster (Fig. 1b), and those at distant phases into different
clusters. Inversely, SPs in the same cluster can show phase
propinquity with a high chance.

For different subjects, on the one hand, their gait patterns
still have much similarity. After all, human gait is a particular
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type of movement that holds a common pattern. Consequently,
SPs at nearby step-cycle phases still tends to be clustered
together, so the phase propinquity can hold across different
subjects. On the other hand, as to recognition, finding the
correct correspondence among the SPs of the same subject
is much more important than doing it for different subjects.
Even if the phase propinquity across subjects may not as stable
as that for the same subject, it will not matter much for the
recognition algorithm we are going to present.

IV. SP SPARSE REPRESENTATION AND SP-COLLECTION
RECOGNITION

In this section, we present our method for recognizing gait
acceleration series using their SP collections. In particular, we
encode individual SPs in terms of their descriptors by sparse
representations with implicitly consideration of their phase.
We then recognize a gait acceleration series by probabilisti-
cally fusing the errors for subject-wisely reconstructing its SPs
from their sparse code.

Suppose that the gallery contains gait acceleration series of
q known subjects. For the ith subject’s gallery series, let ni

denote the total SP number, xhii
j 2 Rh denote jth SP in terms

of its descriptor2, and Xi = [x
hii
1 ,x

hii
2 , . . . ,x

hii
ni ] 2 Rh⇥ni .

We further concatenate {Xi}qi=1 into a larger matrix X =

[X1,X2, . . . ,Xq] 2 Rh⇥n, where n =

Pq
i=1 ni.

Given a probe series with unknown identity, let us write
Y ⇢ Rh for its SP collections in terms of SP descriptors. To
recognize this series, we first encode each SP in Y with the
dictionary X, and then propose CSCC for both identification
and verification purpose.

A. Sparse representation of SPs with clusters in dictionary
For an SP y 2 Y , we intend to encode it as a linear

combination with the columns of X. Without additional con-
straint, y may be encoded with SPs extracted at any step-cycle
phase, which may mess up localities for different stages of gait
motion (e.g., the initial contact, loading response, mid stance,
etc [43]) and make y’s code physically meaningless.

At first glance, in order to encode y with SPs extracted at
nearby phases, we need compute all the SPs’ phases based
on step-cycle detection or accurate phase registration, which
we try to avoid in our method. Fortunately, this goal can also
be roughly achieved by leveraging the phase propinquity of
SPs clustered in terms of descriptor similarity (Section III-B).
In particular, we group the columns of X into r clusters3

by the k-means algorithm, find the sub-dictionary composed
of the u clusters most similar to y, and constrain y’s code
to concentrate only in this sub-dictionary. According to the
discussion in Section III-B, most SPs in the chosen sub-
dictionary would be extracted at phases close to y’s.

Let cj 2 {1, 2, . . . , r}, 1  j  n denote the cluster label of
the jth column of X, wk 2 Rh denote the center (euclidean

2Without introducing ambiguity, we denote an SP and its descriptor by the
same symbol for notation convenience.

3Considering the gait pattern diversity and complexity when a large number
of subjects exist, more homogenous groups need to be generated in practice
than what we illustrated in Fig. 2.

mean) of the kth groups, and W = [w1,w2, . . . ,wr] 2 Rh⇥r.
We compute the distance between y and wk (k = 1, 2, . . . , r)
as

dk = min

↵
ky � ↵wkk2 ,

where ↵ > 0 is used for rescaling the cluster center. Sorting
{dk}rk=1 in ascending order, we get dk1 , dk2 , . . . , dkr . The
index set of the clusters in the chosen sub-dictionary is
K = {k1, k2, . . . , ku}.

Now, we will encode y as a linear combination of the
elements in the chosen sub-dictionary. By introducing the `

0-
norm constraint, we can make y’s code concentrate only in a
few most relevant elements in the sub-dictionary, which may
benefit the discriminativeness of y’s code. More specifically,
y’s code is obtained by solving

�⇤
= argmin

�
ky � �Xk2 , (6)

s.t. k�k0  v, and �j = 0 if cj /2 K, (7)

where the `

0-norm k�k0 is the number of non-zero entries
in �, v 2 N+ constrains the maximum number of non-zero
entries in y’s code, and the second part of (7) constrains the
encoding to be conducted with the sub-dictionary. A reason-
able local solution to (6) can be obtained by the orthogonal
matching pursuit (OMP) [44], [45], [46] algorithm. Thanks to
pruning the whole dictionary to a subset, the problem scale of
(6) is not large, which enables OMP to produce a convenient
solution.

B. Recognition by Classifier for Sparse-Code Collections
With the SP collection Y of the probe, we will formulate

the recognition task as a probabilistic decision problem. Let
us write l for the random variable indicating the identity of
the probe series. For an SP y 2 Y , we will define p(l = i|y)
based on its sparse representation; and, taking the elements of
Y as independent observations, we will obtain p(l = i|Y).

Let us write �⇤ for the sparse code of y 2 Y , and let
X(i) = [O1, . . . ,Oi�1,Xi,Oi+1, . . . ,Oq] for i = 1, 2, . . . , q,
where Oi is the h ⇥ ni zero matrix. Note that only the sub-
matrix of X associating with the ith subject is kept in X(i). For
each ith subject, we compute the residual ei of reconstructing
y solely using the SPs coming from the ith subject’s gallery
series, say,

ei = y � �⇤X(i). (8)

As demonstrated by Wright et al. [47] in their work on sparse
representation classification, the magnitude of ei suggests how
dissimilar a sample y is to the known samples of the ith
subject. In view of this, we use the `

1-norm of the residual ei
to define the posterior probability of l given y in a softmax
manner as

p(l = i|y) = exp(�✓keik1)Pq
j=1 exp(�✓kejk1)

, (9)

where ✓ is a constant coefficient4.
4According to our experience, the value of ✓ has little influence on the

recognition performance provided that the computational precision is sufficient
for (11). However, in practice, ✓ has to be valued properly to avoid numerical
underflow, which does affect the algorithm correctness.
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Figure 3: Body locations wearing accelerometers

Now, for the ith subject, let us write

�i =

X

y2Y
ln p(l = i|y). (10)

Since l should normally follow a uniform distribution over
{1, 2, . . . , q}, say p(l = i) = 1/q, we obtain that

p(l = i|Y) =

exp(�i)Pp
i=1 exp(�i)

. (11)

With p(l = i|Y) obtained, we realize identification by max-
imum a posteriori, and realize verification by thresholding. In
particular to verification, we take the first subject as the target,
and the rest (q � 1) as the cohorts, which do not appear as
impostors. Then, only p(l = 1|Y) is used as the verification
score. The above classifier works for sparse code collections,
like our SP-based representation of gait acceleration series,
and is termed CSCC.

At last, we extend our algorithm for the multi-accelerometer
case. When gait acceleration series are present for multiple
body locations, we encode the SPs and estimate l’s posterior
with respect to a single SP (from Section III to Eq. 9)
independently for each series so that SPs from different series
do not interfere with each other. After that, we put the SPs
from all the series together as Y , and compute p(l = i|Y)

using (10) and (11).

V. THE ZJU-GAITACC DATASET

To support the research of accelerometer-based gait recog-
nition, we built the ZJU-GaitAcc dataset and published it for
open access.

As it was shown in Fig. 3, we measured gait acceleration
by the Wii Remotes5 fastened at 5 body locations: the left
upper arm, the right wrist, the right side of the pelvis, the
left thigh, and the right ankle. These locations covers the
most important articulation structures of the human body.
Considering the symmetry of the human gait, we left the
mirrored body locations without sensors. The choice of the left

5The Wii Remote is the primary controller for Nintendo’s Wii console.

Table II: Summary of ZJU-GaitAcc

Property Value
# Subjects 175
# Recording sessions 2
# Subjects in both sessions (Session 1 & 2) 153
# Subjects in only one session (Session 0) 22
# Records per subject in one session 6
Time intervals between the two sessions 1wk~0.5yr
Floor length ⇡ 20m
Effective length of a record a⇡ 7~15s
Effective full step cycles in a record a⇡ 7~14
Sample frequency 100Hz
a. for 95% of all the records in ZJU-GaitAcc.

or right side is randomly determined and fixed. It should not
affect the discriminativeness of gait acceleration significantly.6

The Wii Remote has an ADXL330 triaxial accelerometer,
which can measures acceleration at least up to ±3g and
typically to ±5g, where “g” denotes the gravitational constant.
The acceleration readings were measured with the precision
of about (5/128)g and sent out in real time via Bluetooth
at frequencies up to 100Hz. We used a laptop to receive the
acceleration readings, and resampled them at exactly 100Hz.

We asked the participants to naturally and straightly walk
through a level floor of 20m length. The recording began
before they started to walk and ended after they stopped.
Nonetheless, only the middle segments that corresponds to the
walking periods are taken to be useful. We manually annotated
the starting and ending points of the useful segments, where
the badly collected cycles caused by unstable wireless com-
munication at the two ends were eliminated in the meanwhile.
Normally, the useful length of a record are 7~15s.

To facilitate the research on gait analysis relying on cycle
detection, we provided the manual annotations of the step
cycles with ZJU-GaitAcc. As it was shown in Fig. 4, we
manually annotated7 the cycle borders at the cyclic valley
points of the gait acceleration series recorded at the ankle8.
Normally, 7~14 full step cycles (one left and one right step
constitute a full step) existed within the useful segment of a
record.

To make ZJU-GaitAcc close to practical scenarios, we
gave few instructions on the dress of the participants. They
might wear any kind of clothes and shoes except the slippers,
which are proven to have too strong impact on human gait
patterns [48]. A participant might also dress in different
ways for the two sessions. What is more, as we did not
use particularly designed clothes or shoes for acceleration
acquisition (they are used in some existing pieces of works,
e.g. [7]), the Wii Remotes could not be mounted on the specific

6The symmetry of human gait is not strict, so equipping sensors on both side
may result in a bit better discriminativeness than on a single side. However,
wearing too many sensors may be a burden for the users. As a trade-off, we
only used one side.

7To reduce the cost of manual labeling, we in fact develop a semi-automatic
algorithm to help us pre-detect the valley points. This algorithm can detect
most (>95%) valley points with a small amount of human interaction. After
that, we check all the series and correct the wrong and missing detections
manually.

8We only annotated step cycles for the ankle, and applied them to all the
other locations, at which it is more difficult to annotate step cycles.
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Figure 4: Data illustration of ZJU-GaitAcc – gait acceleration
series simultaneously obtained at 5 body locations. The high-
lighted segments are annotated to be useful. The blue dashed
are the annotated cycle borders, which are located at the cyclic
valley points marked by the red crosses in the subfigure for
the right ankle.

body locations very precisely for different participants and
sessions. It imitated the practical scenarios of wearable and
portable devices.

There were 175 volunteers participating in our data acqui-
sition. 153 of them were present in 2 sessions (Session 1 and
2) separated by 1 week to 0.5 year for different subjects so
that the natural gait changes over time were incorporated into
the dataset. The other 22 volunteers participated in only one
session. To distinguish them from those appearing in both
the two sessions, we grouped their records into a separate
session, termed Session 0. For a single participate, 6 records
were acquired in one session. Accordingly, we organized the
records in each session into 6 batches.

The scale of ZJU-GaitAcc was large compared with existing
datasets attached to previous work. One exception was Trung
et al.’s dataset [34], which contains 736 subjects. Nevertheless,
it had not been publicly accessible, and contained only the gait
acceleration measured at one body location.

Based on the above specification, which were summarized
in Table II, ZJU-GaitAcc turned out be challenging due to

• the natural gait changes over time,
• the gait variations attributed to dress changes,
• and the variations of the accelerometer location and

orientation.

ZJU-GaitAcc is open to public access at
http://www.cs.zju.edu.cn/~gpan/database/gaitacc.html

Because of our agreement with the volunteers, we cannot
release personal information, such as age and gender, with
the dataset. However, a rough statistics can be found on the
webpage.

VI. EXPERIMENTS

With the ZJU-GaitAcc dataset, we experimentally evaluated
the proposed method in several aspects. First, we benchmarked
it for all the possible combinations of the 5 body locations
available in the dataset. Second, we inspected the internal
procedure of our sparse coding scheme, and illustrated its
effectiveness. Finally, we compared our algorithm with a
few typical existing methods, where we considered both the
performance in the common scenario and the robustness to the
length limitation of gait acceleration series.

For identification, we took each batch of records in either
Session 1 or 2 as the gallery and all the 6 batches in the other
session as the probes. Session 0 was always merged into the
gallery session. Thus, 6⇥2 sub-evaluations with 153 test cases
are present, leading to 1,836 test cases in total.

For verification, we partitioned the subjects in Session 1
and 2 into 3 folds, and enumerately take each fold as
the cohorts and the rest 2 as the testing set. For each
iteration, every series in the testing set was taken as the
known target once. Together with the cohort series in the
same batch and same session, it formed the gallery (51
subjects). All the series in the other session of the target were
taken as the probes. Unlike what we did for identification,
Session 0 was always merged into the probe session,
serving as impostors. The total number of the test cases
is 3|{z}

#folds

⇥
�
153⇥ 2

3 ⇥ 6⇥ 2

�
| {z }

#targets for fold

⇥
�
(153⇥ 2

3 + 22)⇥ 6

�
| {z }

#probes per target

=

2, 731, 968.

9 Note that for both identification and verification,
only one series per subject existed in the gallery.

The parameters for our algorithm were set to the values
shown in the following table.

Param. h �0 �N � rid rvr u v ✓

Value 21 1.2 0.2 2 200 100 1 8 50

Note that h is the dimension of the SP descriptor, �0 is the
base scale, �N is the scale for the natural blur of the series,
and � is the scale factor (Section III-A). Since the multi-scale
SP is an extension of the single-scale SP used in [21], the
values of h,�0,�N are chosen in consistent with the optimal
parameters in [21]. Because the gallery sizes were different
for identification and verification, the cluster number r was
valued differently: r = rid for identification, and r = rvr

for verification. u is the number of chosen clusters , and v is
the maximum number of the non-zero entries (Section IV-A).
Their values are chosen by cross-validation. ✓ is the constant
multiplier in the softmax probability (Section IV-B).

In addition, our implementation is in MATLAB. When
all the five available body locations were used, a single
test case averagely took about 12s for identification and

9This protocol is very exhausting, as it covers all the possible testing pairs.
For the sake of efficiency, a more commonly used protocol is to sample only a
relatively small number (e.g., several thousands) of pairs for testing. Here, we
value the reliability of the results more than the efficiency of the experiments,
and use the most exhausting protocol.
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Table III: Identification rates of various body locations

N. Loc- RR EER N. Locations RR EER
ations (%) (%) (%) (%)

1

Wr 56.4 13.0

3

Wr, Up, Pv 86.0 5.2
Up 63.9 9.9 Wr, Up, Th 87.1 4.4
Pv 73.4 8.9 Wr, Up, Ak 87.2 4.2
Th 68.3 8.6 Wr, Pv, Th 90.2 3.5
Ak 68.8 9.5 Wr, Pv, Ak 91.8 3.2

2

Wr, Up 72.5 7.9 Wr, Th, Ak 90.9 3.1
Wr, Pv 82.0 6.1 Up, Pv, Th 89.8 3.8
Wr, Th 81.4 5.6 Up, Pv, Ak 91.4 3.3
Wr, Ak 80.6 6.1 Up, Th, Ak 91.3 3.1
Up, Pv 81.9 6.4 Pv, Th, Ak 93.1 2.7

Up, Th 82.6 5.3

4

Wr, Up, Pv, Th 92.0 3.4
Up, Ak 82.3 5.2 Wr, Pv, Th, Ak 93.3 2.9
Pv, Th 85.6 4.4 Wr, Up, Th, Ak 93.7 2.7
Pv, Ak 87.5 4.1 Wr, Up, Pv, Ak 95.0 2.3

Th, Ak 86.1 4.2 Up, Pv, Th, Ak 94.9 2.4
5 Wr, Up, Pv, Th, Ak (All the 5 body locations) 95.8 2.2

Remark: Wr – (right) wrist; Up – (left) upper arm;
Pv – (right side of) pelvis; Th – (left) thigh; Ak – (right) ankle.

1.5s10 for verification on a desktop with a 4-core 3.07GHz
CPU and a 133MHz frontal bus.11 While such efficiency
was already enough for practical usage, it would be im-
proved by implementing the method in a less redundant
language like C/C++. Our code can be downloaded at
http://www.ytzhang.net/software/gait-sp/

A. Recognition with different combinations of body locations
Table III reported the performance of the proposed algo-

rithm for all the possible combinations of the 5 body locations.
Both the Recognition Rates (RRs, or the rank-1 accuracy) for
identification and Equal Error Rates (EERs) for verification
were present.

The performance of algorithm gradually increased as more
and more body locations were combined. The RRs for the
combinations of 1~4 body locations were around 65%, 80%,
90%, and 93%, respectively; and, the EERs were around 11%,
6%, 4%, and 3%. By using all the 5 body locations, our
algorithm achieved the RR of 95.8% and the EER of 2.2%.
The increasing performance indicated that gait acceleration at
distinct body locations contain mutually complementary infor-
mation for profiling human gait in full scale. Our algorithm
combined the discriminativeness of each body location for
reliable recognition.

When a single body location was used, our algorithm per-
formed the best at the pelvis for identification and at the thigh
for verification. When 2~4 body locations were together used,
the combinations of “pelvis+ankle”, “pelvis+thigh+ankle”, and

10The reader may have noticed that, though the time consumption for a
single test case is practical, the total time cost for performing the verification
experiments might turn out to be huge (i.e., 50 days). Nevertheless, by running
4 parallel jobs on 5 machines, it can be done within 3 days.

11The time cost per test case was much less for verification than for
identification. The causes were in two folds: 1) the gallery set was smaller
for verification; 2) as the test case number was much larger for verification,
algorithm initialization, like clustering SPs, attributed to significantly less
portion of the total time cost.
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Figure 5: Illustration of coding an SP from the acceleration
series recorded at the right ankle. a) An SP on a probe series of
Subject 1; b) its descriptor; c) the phase distribution of the SPs
in the selected sub-dictionary (composed of 1 cluster), whose
summit is close to the phase of the given SP; d) the center
(mean) of the sub-dictionary, which is similar to the descriptor
of the given SP; e) all the elements of the sub-dictionary; f)
the coefficient distribution of the final code.

“wrist+upper-arm+thigh+ankle” respectively achieved the best
performance. According to Table III, the gait acceleration
series recorded at the 5 different body locations generally
made comparable contribution to the performance of our
algorithm, while those at the pelvis, the thigh, and the ankle
were more useful than those at the wrist and the upper arm.
After all, the torso and legs are more responsible for human
gait than the arms, as the arm motion is mainly for keep
balance and can be varied without significant influence on the
normal walk of people.

B. Effectiveness of the sparse coding scheme for SPs
We illustrated the internal procedures of our sparse coding

scheme for SPs using the identification settings.
Fig. 5 illustrated how an SP on a probe series is encoded.

From the dictionary, which contains all the SPs from the
gallery series, we took the cluster whose center (Fig. 5d)
was most similar to the given SP (Fig. 5b) in terms of the
descriptor as the chosen sub-dictionary. It turned out that the
SPs in the sub-dictionary were also close to the given SP in
terms of the step-cycle phase (Fig. 5a,c), which was consistent
with our motivation for ensuring the phase propinquity in SP
encoding. Then, we encoded the given SP with the chosen sub-
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Figure 6: Phase propinquity achieved by sub-dictionary se-
lection. a) We averaged the phase distances from an SP to
the elements of its sub-dictionary, and showed the average-
distance distribution of the SPs from all the probes. b) Some
SP clusters of the gallery series had two peaks in phase, which
caused the high frequency between 0.2 and 0.3 in the first
subfigure.

dictionary (Fig. 5e). The obtained coefficients concentrated in
the groundtruth subject (Fig. 5f).

To further justify how effective the sub-dictionary selection
is in realizing phase propinquity, we inspected the average
phase distance12 between a given SP and the elements of its
corresponding sub-dictionary. Its distribution over the entire
dataset was shown in Fig. 6a. The frequency mostly concen-
trated in the interval of [0, 0.1), and dropped rapidly as the
distance increased, which indicated that most SPs were close
to their corresponding sub-dictionaries in terms of the step-
cycle phase. Admittedly, an exception happened in the interval
of [0.2, 0.3) due to the existence of clusters with double phase
peaks, as it is shown in Fig. 6b. Nevertheless, even in this case,
half of the sub-dictionary elements were close to given SPs in
terms of phase.

C. Comparison with other methods

We compared the proposed algorithm with 4 existing meth-
ods: cycle matching [29], average cycle [27], eigenstep [28],
and SP voting [21]. All the method were applied to the
series of acceleration magnitude rather than other acceleration
features. For cycle matching, average cycle, and eigenstep, we
took the Euclidean distance as the similarity measurement. We
also used the sum rule to fuse the scores obtained at multiple
body locations so that these methods could work in the multi-
accelerometer cases. For SP voting, we, on the one hand,
conducted the original method, which uses the single-scale SP
representation; on the other hand, we adapted it to the multi-
scale SP representation so as to demonstrate the effectiveness
of the proposed extension on SP extraction. The latter setting
was not actually an existing work, and was referred to as
“msSP voting”. While all the other mentioned methods can do
both identification and verification, the SP and msSP voting
can only do identification. The non-trivialness of being adapted
to verification task is an important disadvantage of the SP and
msSP voting compared with the proposed method.

12For two SPs at phase �1,�2 2 [0, 1), the phase distance of them is
min(|�2 � �1|, 1� |�2 � �1|) 2 [0, 0.5].
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Figure 7: Curves of average performance v.s. body location
number for different methods.

All the above methods except ours require cycle detection.
We directly used the step-cycle annotations provided in the
dataset so that no cycle detection failures would happen and
these methods would achieve the best possible performance,
which is a kind of “cheating”. We would show that the
proposed method could perform the best, even when the other
methods are cheating.

Moreover, the way that our algorithm uses the cohorts for
verification (Eq. 11 in Section IV-B) may be considered as a
type of score normalization, which can usually improves the
performance of many methods. For the sake of fairness, we
also normalized the scores in the other methods with the score
summation on the gallery. Only the performance achieved with
the normalized scores was reported, as it was always better
than that with the unnormalized ones.

1) On full series: Fig. 7 reported the mean RRs and
EERs with respect to the number of body locations. msSP
voting outperformed the existing methods in our evaluations
including SP voting, which gives evidence for the effectiveness
of our multi-scale extension for SP extraction. Our algorithm
performed a little better than msSP voting for identification,
and significantly better than the other methods for both
identification and verification. Considering its independence
on cycle detection, the superiority of our algorithm was
noticeable. Overall, the performance of the methods are in
the order: the proposed method > msSP voting (identification
only) > SP voting (identification only) > cycle matching >

average cycle ⇡ eigenstep13.
We also reported their Cumulative Match Characteristics

13Eigenstep was expected to perform significant better than average cycle
[28]. However, methods based on PCA are generally sensitive to misalign-
ment. Probably, the widely existing inter-cycle misalignment in ZJU-GaitAcc
significantly harmed the performance of eigenstep.
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(CMC) in Fig. 8 and Receiver Operating Characteristics (ROC)
in Fig. 9, where the best performing combinations for 1, 3, and
5 body locations were taken for illustration. In particular, the
rank-5 accuracy of our algorithm for identification was nearly
99% when 3 and 5 body locations are used. The performance
gap between other methods and ours became more noticeable
on the ROC curves.

2) On series of controlled lengths: In some practical sce-
narios, acquiring a long gait acceleration series without break
might be difficult, so the algorithm performance on series with
limited length is important. We evaluated identification with
the probe series of different lengths. In particular, we took the
sub-series consisting of the first given number of step cycles
out of every probe series as the new probe series.

Fig. 10 reported the RRs for three body location combi-
nation cases. Though the SP-based methods appeared more
sensitive to insufficient series lengths, our algorithm and msSP
voting surpassed the others significantly even when only one
step cycle was used. When 5 step cycles were present in a
probe series, our algorithm could already achieve fairly good
performance.

An additional experiment was performed in order to demon-
strate the effectiveness of CSCC in fusing the weak classifi-
cation results on individual SPs into a reliable one. In this
experiment, only one SP is used for predicting the identity
of a series. We did this for each SP, and the RR in this case
was only 10.5%. Comparing it with the performance of our
algorithm on entire probe series, we can notice the importance
of the probabilistic fusing in CSCC.

VII. CONCLUSION

In this paper we propose an accelerometer-based gait recog-
nition method, which consists of a multi-scale SP extrac-
tion method, an SP sparse encoding scheme with implicit
considering the phase propinquity, and the CSCC framework
for recognizing feature collection. Our method avoids the
two problems that many existing methods suffers from, i.e.,
cycle detection failures and inter-cycle phase misalignment. Its
efficacy is demonstrated by experimental results on the ZJU-
GaitAcc dataset.
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Figure 8: Cumulative Match Characteristic (CMC) curves for different methods with various body locations.
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Figure 9: Receiver Operating Characteristic (ROC) for different methods with various body locations.
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Figure 10: Curves of identification rate v.s. probe cycle number for different methods.
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