

Augmenting Supervised Neural Networks with Unsupervised Objectives for Large-scale Image Classification

Yuting Zhang, Kibok Lee, Honglak Lee

University of Michigan, Ann Arbor

Unsupervised and supervised deep learning

- Deep feature representations can be learned in supervised and unsupervised manners.
 - Supervised objectives learns from the correspondence between data and label space.
 - Unsupervised objectives learns from the data space itself.
- o Supervised deep learning
 - Deep neural networks, convolutional neural networks, recurrent neural networks, ...
 - Task-specific, requires large amounts of supervision
- o Unsupervised deep learning
 - Stacked autoencoders, deep belief networks, deep Boltzmann machines, ...
 - Preserves input information, can leverage large amounts of unlabeled data, but may be suboptimal for supervised tasks.

Unsupervised and supervised deep learning

- Historically, unsupervised learning (e.g., SAE) can be used as a pretraining step for improving and even enabling the supervised learning of deep networks.
- However, such pretraining became unnecessary if the deep neural network is initialized properly, and large amount of labeled data are available.
 - E.g., large-scale convolutional neural networks: AlexNet (Krizhevsky et al., 2012), VGGNet (Simounyan and Zisserman, 2015), GoogLeNet (Szegedy et al., 2015), etc.

• As a result, unsupervised deep learning has been overshadowed by supervised methods.

Revisiting the importance of unsupervised learning

• Pretraining:

Unsupervised \rightarrow Supervised

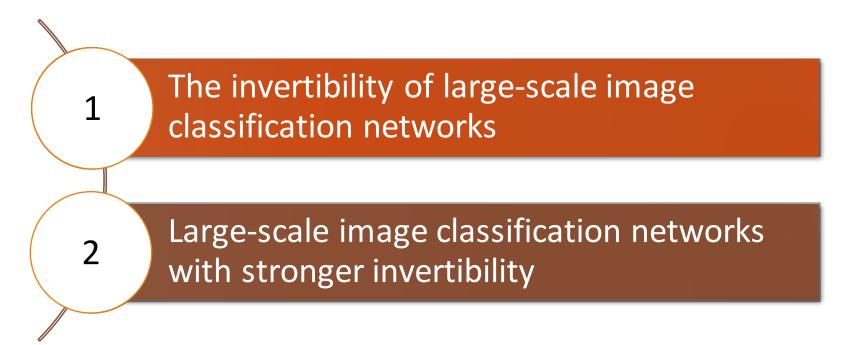
Revisiting the importance of unsupervised learning

- Combination:Unsupervised+Supervisedreconstruction+classification
- Previous work:
 - Autoencoders: Ranzato & Szummer (2008); Larochelle et al. (2009)
 - (Restricted) Boltzmann machines: Larochelle & Bengio, (2008); Goodfellow et al. (2013); Sohn et al. (2013)
 - Dictionary learning: Boureau et al. (2010); Mairal et al. (2010)

Revisiting the importance of unsupervised learning

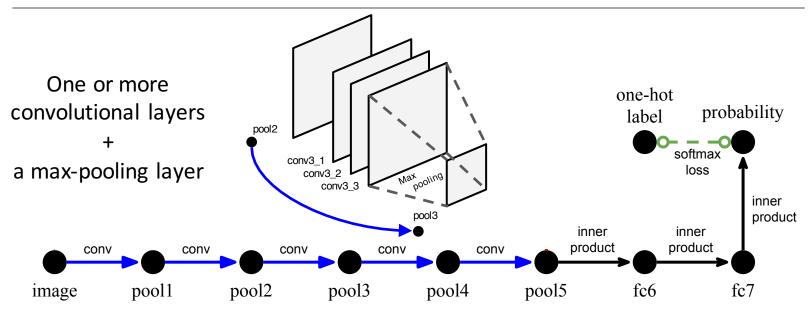
- Combination:UnsupervisedImage: SupervisedreconstructionImage: Classification
- Previous work:
 - Autoencoders: Ranzato & Szummer (2008); Larochelle et al. (2009)
 - (Restricted) Boltzmann machines: Larochelle & Bengio, (2008); Goodfellow et al. (2013); Sohn et al. (2013)
 - Dictionary learning: Boureau et al. (2010); Mairal et al. (2010)
 - Ladder network: Rasmus et al. (2015)
 - layer-wise skip links & pathway combinators
 - Stacked "what-where" AE (SWWAE): Zhao et al. (2015)
 - using unpooling switches (Zeiler and Fergus, 2009)
- Promising for improving classification performance, but have not been shown to be beneficial for large-scale supervised deep neural nets.

Outlines

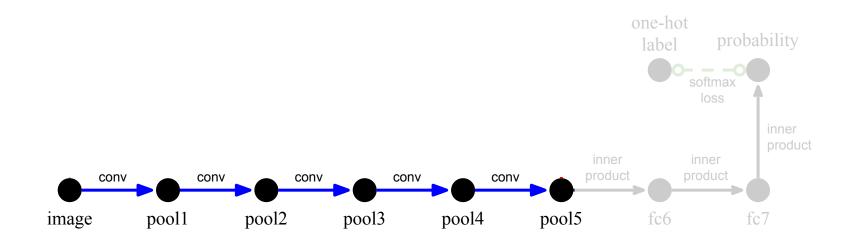


Invertibility of deep convolutional neural networks

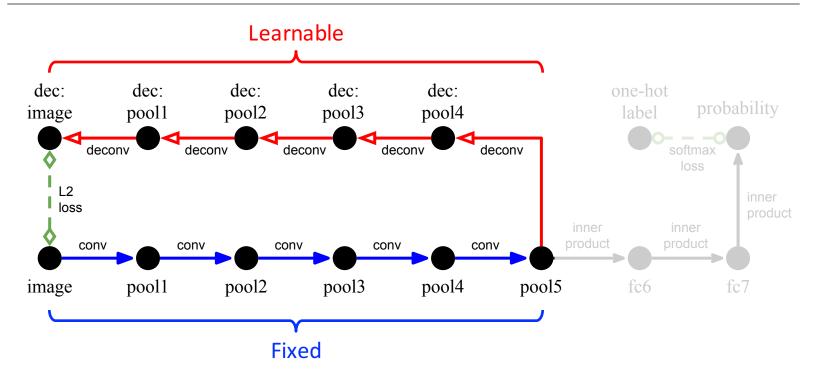
A typical classification network (VGGNet)



Inducing an autoencoder from a classification network (VGGNet, pool5)

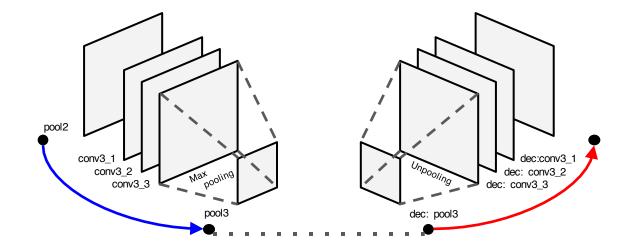


Training a decoding pathway for a classification network (VGGNet, pool5)



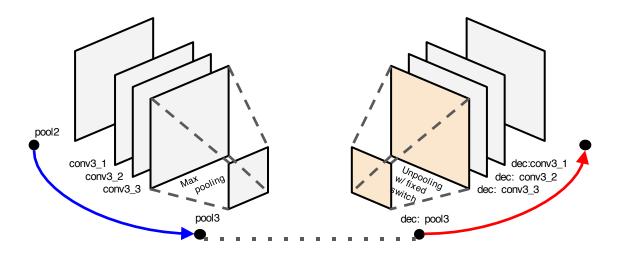
Micro-architectures for decoders

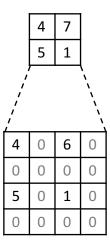
• Use "Unpooling" to approximately invert the pooling operation



Micro-architectures for decoders (Unpooling with **fixed** switches, ordinary SAE)

- One can use the ordinary stacked autoencoder (SAE).
 - Related work: Dosovitskiy, A. and Brox, T, "Inverting visual representations with convolutional networks", CVPR 2016.

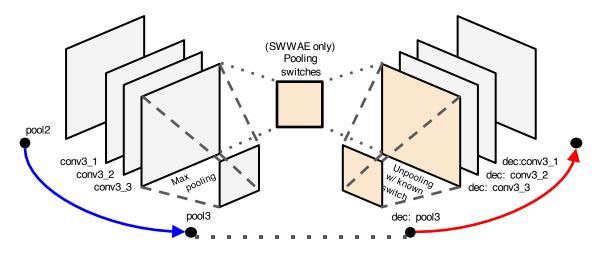


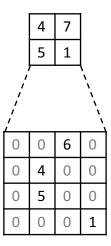


Unpooling with fixed switches (Upsampling)

Micro-architectures for decoders (Unpooling with **known** switches, SWWAE)

- We can also use stacked "what-where" autoencoders (SWWAE).
 - Unpooling with the known switches transferred from the encoder.
 - More accurate inversion, since spatial details are recovered better.

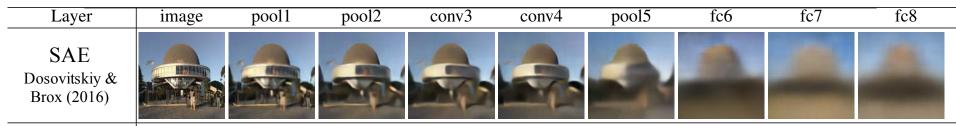




Unpooling with **known** switches

	Input Image	SAE Dosovitskiy & Brox (2015)	SWWAE
Reconstructed from one layer			

Reconstruction via SAE decoders



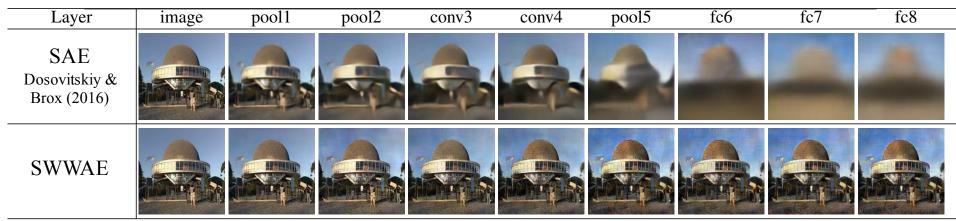
The network is less invertible for higher layers, so deeper representations preserve less input information.

- Two possible sources of information loss
 - Convolutional filters and non-linearity
 - Max-pooling

(Transformation) (Spatial invariance)

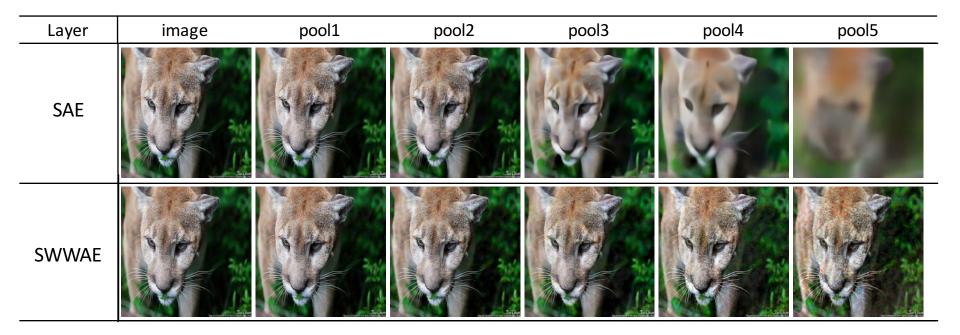
• They are mixed in the SAE reconstruction results.

Reconstruction via SAE and SWWAE decoders

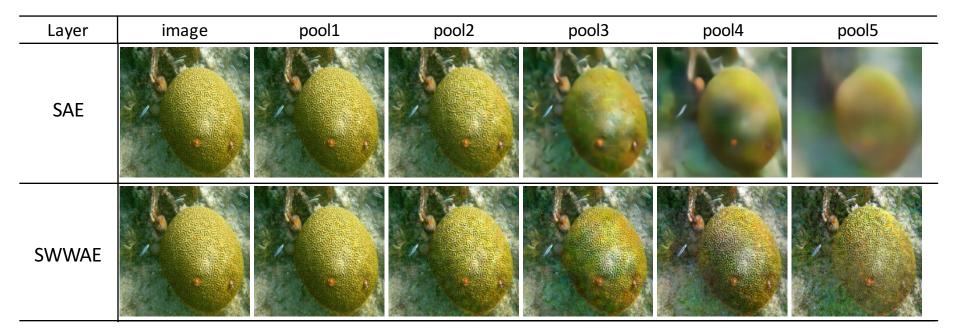


- Using the encoder pooling switches for unpooling, the information loss due to max-pooling can be better recovered.
- The extremely good reconstruction quality of SWWAE indicates the "convolutional filters + ReLU" cause very minor information losses.

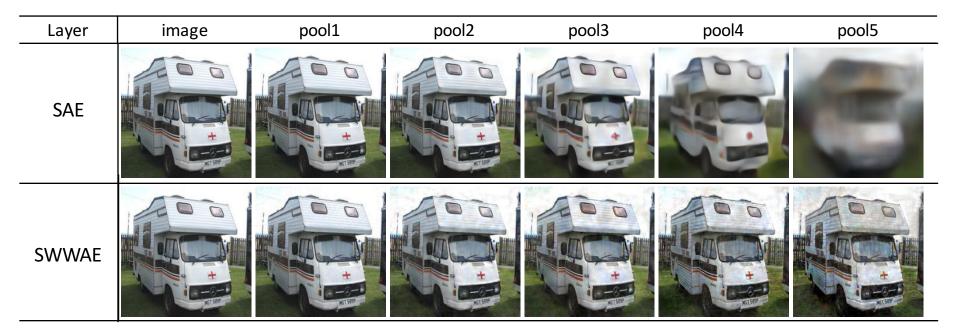
Reconstruction for 16-layer VGGNet



Reconstruction for 16-layer VGGNet



Reconstruction for 16-layer VGGNet



Observations from reconstruction

Operator	Effect	Information loss
Convolutional filters + ReLU	Feature transformation	Minor
Max-pooling	Spatial invariance	Significant

Hypotheses from reconstruction

Operator	Effect	Information loss
Convolutional filters	Feature	The less,
+ ReLU	transformation	the better

• The invertiblility is important and potentially helpful for the convolutional filters in a deep classification network.

Hypotheses from reconstruction

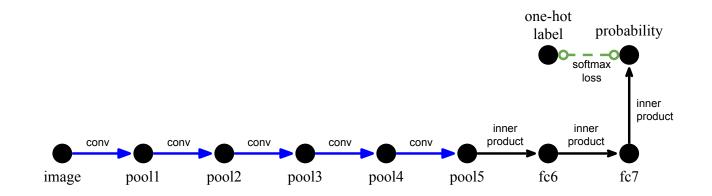
Operator	Effect	Information loss
Convolutional filters	Feature	The less,
+ ReLU	transformation	the better

Aim to improve the classification network

Classification networks with stronger invertibility

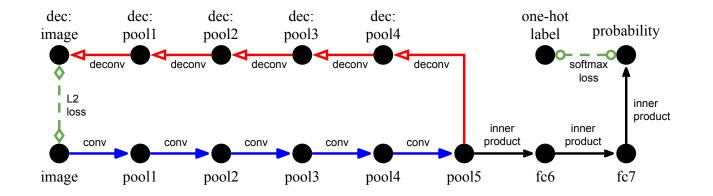
Classification networks with stronger invertibility

- Given a classification network
 - We take the 16-layer VGGNet as the baseline model



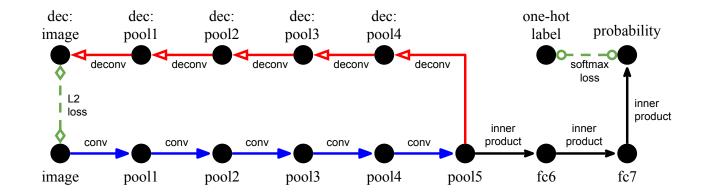
Classification networks with stronger invertibility

- Augmenting the classification network with a decoding pathway
 - starting from the last convolutional layer (pool5 in VGGNet)
- Multi-task learning using both classification and reconstruction objectives.



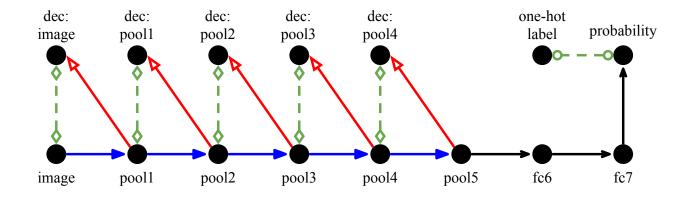
Training procedure

- *Step 1*: Initialize the classification network with pretrained weights.
- *Step 2*: Train the decoder while fixing the classification network.
 - For very deep network, it is hard to train it directly with random initialization.



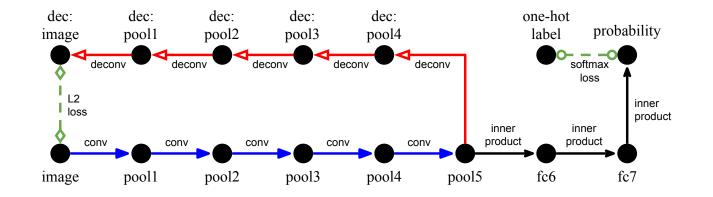
Model variant: SAE/SWWAE-layerwise

• *Step 2*: Train "layerwise" decoding pathways from random initialization.



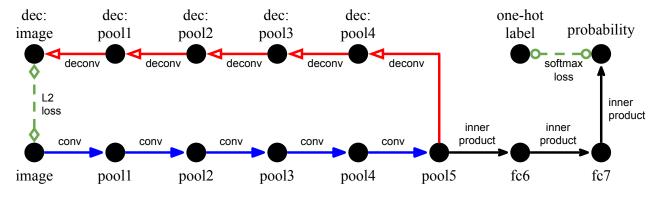
Modelvariant: SAE/SWWAE-first

- *Step 2*: Train "layerwise" decoding pathways from random initialization.
- Step 3: Train the top-down decoding pathways, which is initialized in Step 2.
 - The reconstruction loss is only at the "first" layer.



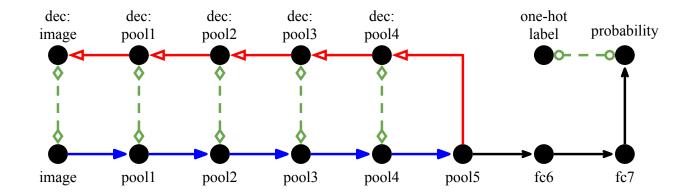
Training procedure

- Step 2: Train "layerwise" decoding pathways from random initialization.
- *Step 3*: Train the top-down decoding pathways, which is initialized in Step 2.
- *Step 4*: Finetune the entire augmented network together.



Model variant: SAE/SWWAE-all

- Every layer can have its own reconstruction loss
 - Decoder layers can better corresponds to encoder layers
 - Intermediate layers can get more training signals



Evaluations on ImageNet ILSVRC 2012

- Baseline model: 16-Layer VGGNet
- Augmented models: SAE/SWWAE first/all/layerwise (6 in total)
- Testing protocol
 - Rescaling the shorter edge to 256px
 - "Single crop" scheme: 224x224 patch in the center
 - Clean results without postprocessing
 - "Convolution" scheme: whole VGGNet as a convolutional operator
 - More practical results

Sampling	Single crop		
Model	Top-1	Top-5	
VGGNet	29.05	10.07	

Sampling	Single crop		
Model	Top-1	Top-5	
VGGNet	29.05	10.07	
+ SAE-first	27.70	9.28	
+ SAE-all	27.54	9.17	
+ SAE-layerwise	27.60	9.19	

Get lower errors

Sampling	Single crop		
Model	Top-1	Top-5	
VGGNet	29.05	10.07	
+ SAE-first	27.70	9.28	
+ SAE-all	27.54	9.17	
+ SAE-layerwise	27.60	9.19	

Layer-wise reconstruction loss is helpful.

Sampling	Single crop		
Model	Top-1	Top-5	
VGGNet	29.05	10.07	
+ SAE-first	27.70	9.28	
+ SAE-all	27.54	9.17	
+ SAE-layerwise	27.60	9.19	
+ SWWAE-first	27.60	9.23	
+ SWWAE-all	27.39	9.06	
+ SWWAE-layerwise	27.53	9.10	

Layer-wise reconstruction loss is helpful.

Even lower errors

Sampling	Single crop		
Model	Top-1	Top-5	
VGGNet	29.05	10.07	
+ SAE-first	27.70	9.28	
+ SAE-all	27.54	9.17	
+ SAE-layerwise	27.60	9.19	
+ SWWAE-first	27.60	9.23	
+ SWWAE-all	27.39	9.06	
+ SWWAE-layerwise	27.53	9.10	

Layer-wise reconstruction loss is helpful.

SWWAE performs slightly better than ordinary SAE

Sampling	Single crop		Convo	lution
Model	Top-1	Top-5	Top-1	Top-5
VGGNet	29.05	10.07	26.97	8.94
+ SAE-first	27.70	9.28	26.09	8.30
+ SAE-all	27.54	9.17	26.10	8.21
+ SAE-layerwise	27.60	9.19	26.06	8.17
+ SWWAE-first	27.60	9.23	25.87	8.14
+ SWWAE-all	27.39	9.06	25.79	8.13
+ SWWAE-layerwise	27.53	9.10	25.97	8.20

Sampling	Single crop		
Model	Top-1	Top-5	
VGGNet	17.43	4.02	
+ SAE-first	15.36	3.13	
+ SAE-all	15.64	3.23	
+ SAE-layerwise	16.20	3.42	
+ SWWAE-first	15.10	3.08	
+ SWWAE-all	15.67	3.24	
+ SWWAE-layerwise	15.42	3.32	

Sampling	Single	e crop
Model	Top-1	Top-5
VGGNet	17.43	4.02
+ SAE-first	15.36	3.13
+ SAE-all	15.64	3.23
+ SAE-layerwise	16.20	3.42
+ SWWAE-first	15.10	3.08
+ SWWAE-all	15.67	3.24
+ SWWAE-layerwise	15.42	3.32

Sampling	Single crop			Validatic	on errors
Model	Top-1	Top-5		Top-1	Top-5
+ SAE-first	15.36	3.13		26.09	8.30
+ SAE-all	15.64	3.23		26.10	8.21
+ SWWAE-first	15.10	3.08		25.87	8.14
+ SWWAE-all	15.67	3.24	\checkmark	25.79	8.13

Sampling	Single crop			Validatio	on errors
Model	Top-1	Top-5		Top-1	Top-5
+ SAE-first	15.36	3.13	\sum	26.09	8.30
+ SAE-all	15.64	3.23	~	26.10	8.21
+ SWWAE-first	15.10	3.08	$\overline{}$	25.87	8.14
+ SWWAE-all	15.67	3.24	~	25.79	8.13

Compared to SAE/SWWAE-first, SAE/SWWAE-all has

- higher training errors
- lower validation errors

Layer-wise reconstruction loss has regularization effects.

Conclusions

- A simple and effective way to incorporate unsupervised objectives into large-scale classification network learning.
- The resultant autoencoder can reconstruct image with extremely high quality from deep representations.
- We improved the image classification performance of the 16-layer VGGNet, a strong baseline model, by a noticeable margin.
- We hope this paper will inspire further investigations on the use of unsupervised learning in a large-scale setting.

Thank you!

Full version: arxiv.org/abs/1606.06582

Code (GitHub): bit.ly/cnn-dec