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Unsupervised	and	supervised	deep	learning

o Deep	 feature	representations	can	be	learned	 in	supervised	and	unsupervised	manners.

§ Supervised	 objectives	 learns	from	the	correspondence	between	data	and	label	space.

§ Unsupervised	 objectives	 learns	from	the	data	space	itself.	

o Supervised	deep	 learning

§ Deep	neural	networks,	convolutional	 neural	networks,	 recurrent	neural	networks,	…

§ Task-specific,	 requires	large	amounts	 of	supervision

o Unsupervised	deep	learning

§ Stacked	autoencoders,	 deep	belief	networks,	deep	Boltzmann	machines,	…

§ Preserves	input	 information,	can	leverage	large	amounts	 of	unlabeled	data,	but	may	be	
suboptimal	 for	supervised	 tasks.
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Unsupervised	and	supervised	deep	learning

o Historically,	unsupervised	learning (e.g.,	SAE)	can	be	used	as	a	pretraining step	for	
improving	and	even	enabling	the	supervised	learning	of	deep	networks.	

o However,	such	pretraining became	unnecessary	if	the	deep	neural	network	 is	
initialized	properly,	and	large	amount	of	labeled	data	are	available.	

§ E.g.,	large-scale	convolutional	neural	networks:	AlexNet (Krizhevsky et	al.,	2012),	
VGGNet (Simounyanand	Zisserman,	2015),	GoogLeNet (Szegedy et	al.,	2015),	etc.

o As	a	result,	unsupervised	 deep	learning	has	been	overshadowed	by	supervised	
methods.
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o Pretraining:	 Unsupervised	 Supervised

Revisiting	the	importance	of	unsupervised	learning

à
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o Combination:	 Unsupervised	 Supervised

reconstruction classification

o Previous	work:
§ Autoencoders:	Ranzato &	Szummer (2008);	Larochelle et	al.	(2009)	
§ (Restricted)	Boltzmann	machines:	Larochelle &	Bengio,	(2008);	Goodfellow et	

al.	(2013);	Sohn et	al.	(2013)
§ Dictionary	learning:	Boureau et	al.	(2010);	Mairal et	al.	(2010)

Ladder	network:	Rasmus et	al.	(2015)

layer-wise	skip	links	&	pathway	combinators

Stacked	“what-where”	AE	(SWWAE):	Zhao	et	al.	(2015)
unpooling switches	(Zeiler and	Fergus,	2009)

Promising	for	improving	classification	performance,	but	have	not	been	
shown	to	be	beneficial	for	large-scale	supervised	deep	neural	nets.

+

Revisiting	the	importance	of	unsupervised	learning

+
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o Combination:	 Unsupervised	 Supervised

reconstruction classification

o Previous	work:
§ Autoencoders:	Ranzato &	Szummer (2008);	Larochelle et	al.	(2009)	
§ (Restricted)	Boltzmann	machines:	Larochelle &	Bengio,	(2008);	Goodfellow et	

al.	(2013);	Sohn et	al.	(2013)
§ Dictionary	learning:	Boureau et	al.	(2010);	Mairal et	al.	(2010)

§ Ladder	network:	Rasmus et	al.	(2015)

• layer-wise	skip	links	&	pathway	combinators

§ Stacked	“what-where”	AE	(SWWAE):	Zhao	et	al.	(2015)
• using	unpooling switches	(Zeiler and	Fergus,	2009)

o Promising	for	improving	classification	performance,	but	have	not	been	
shown	to	be	beneficial for	large-scale	supervised	deep	neural	nets.

+

Revisiting	the	importance	of	unsupervised	learning
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The	invertibility of	large-scale	image	
classification	networks

Large-scale	image	classification	networks	
with	stronger	invertibility

Outlines

1

2



Invertibility of	deep	
convolutional	neural	networks
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Inducing	an	autoencoder
from a	classification	network	(VGGNet,	pool5)	
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Training	a	decoding	pathway
fora	classification	network	(VGGNet,	pool5)	
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Micro-architectures	for	decoders

o Use	“Unpooling”	to	approximately	invert	the	pooling	operation	

conv3_1

conv3_2
conv3_3

pool3

pool2

dec:conv3_1

dec: conv3_2
dec: conv3_3

dec: pool3
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Micro-architectures	for	decoders	
(Unpoolingwith	fixed switches,	ordinary	SAE)

o One	can	use	the	ordinary	stacked	autoencoder (SAE).
§ Related	work:	Dosovitskiy,	A.	and	Brox,	T,	“Inverting	visual	representations	

with	convolutional	networks”,	CVPR	2016.
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Micro-architectures	for	decoders	
(Unpoolingwith	known switches,	SWWAE)

o We	can	also	use	stacked	“what-where”	autoencoders (SWWAE).	

§ Unpooling with	the	known	switches	transferred	from	the encoder.

§ More	accurate	inversion,	since	spatial	details	are	recovered	better.	
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Reconstruction	from	different	layers	(AlexNet)

Input Image SAE
Dosovitskiy &	Brox (2015)

SWWAE

Reconstructed

from

one	layer
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Reconstruction	from	different	layers	(AlexNet)

Input Image SAE
Dosovitskiy &	Brox (2015)

SWWAE

Reconstructed

from

pool1
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Reconstruction	from	different	layers	(AlexNet)

Input Image SAE
Dosovitskiy &	Brox (2015)

SWWAE

Reconstructed

from

pool2
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Reconstruction	from	different	layers	(AlexNet)

Input Image SAE
Dosovitskiy &	Brox (2015)

SWWAE

Reconstructed

from

pool3
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Reconstruction	from	different	layers	(AlexNet)

Input Image SAE
Dosovitskiy &	Brox (2015)

SWWAE

Reconstructed

from

pool4
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Reconstruction	from	different	layers	(AlexNet)

Input Image SAE
Dosovitskiy &	Brox (2015)

SWWAE

Reconstructed

from

pool5
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Reconstruction	from	different	layers	(AlexNet)

Input Image SAE
Dosovitskiy &	Brox (2015)

SWWAE

Reconstructed
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fc6
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Reconstruction	from	different	layers	(AlexNet)

Input Image SAE
Dosovitskiy &	Brox (2015)

SWWAE

Reconstructed

from

fc7
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Reconstruction	from	different	layers	(AlexNet)

Input Image SAE
Dosovitskiy &	Brox (2015)

SWWAE

Reconstructed

from

fc8
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Layer image pool1 pool2 conv3 conv4 pool5 fc6 fc7 fc8

Dosovitskiy &
Brox (2016)

SWWAE-first
(known

unpooling
switches)

SWWAE

SAE
Dosovitskiy & 

Brox (2016)

Reconstruction	via	SAE	decoders

The	network	 is	less	invertible	for	higher	layers,	

so	deeper	representations	preserve	less	input	 information.	

o Two	possible	sources	of	information	loss

§ Convolutional	 filters	and	non-linearity (Transformation)

§ Max-pooling	 (Spatial	invariance)

o They	are	mixed	in	the	SAE	reconstruction	results.
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Reconstruction	via	SAE	and	SWWAE	decoders

o Using	the	encoder	pooling	switches	for	unpooling,	the	information	loss	
due	to	max-pooling	can	be	better	recovered.	

o The	extremely	good	reconstruction	quality	of	SWWAE	indicates	
the	“convolutional	filters	+	ReLU”	cause	very	minor	information	losses.	
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Reconstruction	for	16-layer	VGGNet

SAE

SWWAE

Layer image pool1 pool2 pool3 pool4 pool5
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Reconstruction	for	16-layer	VGGNet
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Layer image pool1 pool2 pool3 pool4 pool5
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Reconstruction	for	16-layer	VGGNet
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Observations from	reconstruction

Operator Effect Information	loss

Convolutional	filters	

+	ReLU

Feature

transformation
Minor

Max-pooling Spatial	invariance Significant



Yuting Zhang,	Kibok Lee,	Honglak Lee

Hypothesesfrom	reconstruction

Operator Effect Information	loss

Convolutional	filters	

+	ReLU

Feature

transformation

The	less,

the	better

• The	invertiblility is	important	and	potentially	helpful	for	

the	convolutional	filters	in	a	deep	classification	network.
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Hypotheses from	reconstruction

Operator Effect Information	loss

Convolutional	filters	

+	ReLU

Feature

transformation

The	less,

the	better

Aim	to	improve	the	

classification	network



Classification	networks	with	
stronger	invertibility
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o Given	a	classification	network

§ We	take	the	16-layer	VGGNet as	the	baseline	model

Classification	networks	with	stronger	invertibility
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(c) SAE-layerwise (layer-wise architecture)
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o Augmenting	 the	classification	network	with	a	decoding	pathway

§ starting	from	the	last	convolutional	layer	(pool5	in	VGGNet)	

o Multi-task	learning	using	both	classification	and	reconstruction	objectives.

Classification	networks	with	stronger	invertibility
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o Step	1:	Initialize	the	classification	network	with	pretrained weights.	

o Step	2:	Train	the	decoder	while	fixing	the	classification	network.	

§ For	very	deep	network,	it	is	hard	to	train	it	directly	with	random	initialization.	

Training	procedure
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o Step	2:	Train	“layerwise”	decoding	pathways	from	random	initialization.	

Model	variant:	SAE/SWWAE-layerwise
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o Step	2:	Train	“layerwise”	decoding	pathways	from	random	initialization.	

o Step	3:	Train	the	top-down	decoding	 pathways,	which	is	initialized	in	Step	2.

§ The	reconstruction	loss	is	only	at	the	“first”	layer.

Model	variant:	SAE/SWWAE-first
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o Step	2:	Train	“layerwise”	decoding	pathways	from	random	initialization.	

o Step	3:	Train	the	top-down	decoding	 pathways,	which	is	initialized	in	Step	2.

o Step	4:	Finetune	 the	entire	augmented	network	together.	

Training	procedure
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Mini-batch	SGD	

for	all	steps



Yuting Zhang,	Kibok Lee,	Honglak Lee

o Every	layer	can	have	its	own	reconstruction	loss

§ Decoder	layers	can	better	corresponds	 to	encoder	 layers

§ Intermediate	layers	can	get	more	training	signals

Model	variant:	SAE/SWWAE-alla
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Evaluations	on	ImageNet	ILSVRC	2012

o Baseline	model:	16-Layer	VGGNet

o Augmented	models:	SAE/SWWAE	- first/all/layerwise (6	in	total)

o Testing	protocol

§ Rescaling	the	shorter	edge	to	256px

§ “Single	crop” scheme:	224x224	patch	in	the	center

• Clean	results	without	postprocessing

§ “Convolution” scheme:	whole	VGGNet as	a	convolutional	operator

• More	practical	results
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Validation	errors	on	ImageNet	ILSVRC	2012

Sampling Single crop

Model Top-1 Top-5

VGGNet 29.05 10.07
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Get	lower	errors

Sampling Single crop

Model Top-1 Top-5

VGGNet 29.05 10.07

+	SAE-first 27.70 9.28

+	SAE-all 27.54 9.17

+	SAE-layerwise 27.60 9.19
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Validation	errors	on	ImageNet	ILSVRC	2012

Sampling Single crop

Model Top-1 Top-5

VGGNet 29.05 10.07

+	SAE-first 27.70 9.28

+	SAE-all 27.54 9.17

+	SAE-layerwise 27.60 9.19

Layer-wise	reconstruction	

loss	is	helpful.
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Validation	errors	on	ImageNet	ILSVRC	2012

Layer-wise	reconstruction	

loss	is	helpful.

Even	lower	errors

Sampling Single crop

Model Top-1 Top-5

VGGNet 29.05 10.07

+	SAE-first 27.70 9.28

+	SAE-all 27.54 9.17

+	SAE-layerwise 27.60 9.19

+	SWWAE-first 27.60 9.23

+	SWWAE-all 27.39 9.06

+	SWWAE-layerwise 27.53 9.10
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Validation	errors	on	ImageNet	ILSVRC	2012

Sampling Single crop

Model Top-1 Top-5

VGGNet 29.05 10.07

+	SAE-first 27.70 9.28

+	SAE-all 27.54 9.17

+	SAE-layerwise 27.60 9.19

+	SWWAE-first 27.60 9.23

+	SWWAE-all 27.39 9.06

+	SWWAE-layerwise 27.53 9.10

Layer-wise	reconstruction	

loss	is	helpful.

SWWAE	performs	slightly	

better	than	ordinary	SAE
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Validation	errors	on	ImageNet	ILSVRC	2012

Sampling Single crop Convolution

Model Top-1 Top-5 Top-1 Top-5

VGGNet 29.05 10.07 26.97 8.94

+	SAE-first 27.70 9.28 26.09 8.30

+	SAE-all 27.54 9.17 26.10 8.21

+	SAE-layerwise 27.60 9.19 26.06 8.17

+	SWWAE-first 27.60 9.23 25.87 8.14

+	SWWAE-all 27.39 9.06 25.79 8.13

+	SWWAE-layerwise 27.53 9.10 25.97 8.20
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Training	errors	on	ImageNet	ILSVRC	2012

Sampling Single crop

Model Top-1 Top-5

VGGNet 17.43 4.02

+	SAE-first 15.36 3.13

+	SAE-all 15.64 3.23

+	SAE-layerwise 16.20 3.42

+	SWWAE-first 15.10 3.08

+	SWWAE-all 15.67 3.24

+	SWWAE-layerwise 15.42 3.32
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Training	errors	on	ImageNet	ILSVRC	2012

Sampling Single crop

Model Top-1 Top-5

VGGNet 17.43 4.02

+	SAE-first 15.36 3.13

+	SAE-all 15.64 3.23

+	SAE-layerwise 16.20 3.42

+	SWWAE-first 15.10 3.08

+	SWWAE-all 15.67 3.24

+	SWWAE-layerwise 15.42 3.32

Get	lower	

training	errors

The	unsupervised	

objectives	help	with	the	

optimization	of	the	

supervised	objectives.
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Training	errors	on	ImageNet	ILSVRC	2012

Sampling Single crop

Model Top-1 Top-5

+	SAE-first 15.36 3.13

+	SAE-all 15.64 3.23

+	SWWAE-first 15.10 3.08

+	SWWAE-all 15.67 3.24

Validation errors

Top-1 Top-5

26.09 8.30

26.10 8.21

25.87 8.14

25.79 8.13
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Training	errors	on	ImageNet	ILSVRC	2012

Sampling Single crop

Model Top-1 Top-5

+	SAE-first 15.36 3.13

+	SAE-all 15.64 3.23

+	SWWAE-first 15.10 3.08

+	SWWAE-all 15.67 3.24

Validation errors

Top-1 Top-5

26.09 8.30

26.10 8.21

25.87 8.14

25.79 8.13

Compared	to	SAE/SWWAE-first,	SAE/SWWAE-all	has	

• higher	 training	errors

• lower	validation	errors
Layer-wise	reconstruction	 loss	

has	regularization	effects.	
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Conclusions

o A	simple	and	effective	way	to	incorporate	unsupervised	objectives	
into	large-scale	classification	network	learning.	

o The	resultant	autoencoder can	reconstruct	image	with	extremely	high	
quality	from	deep	representations.

o We	improved	the	image	classification	performance	of	the	16-layer	
VGGNet,	a	strong	baseline	model,	by	a	noticeable	margin.	

o We	hope	this	paper	will	inspire	further	investigations	on	the	use	of	
unsupervised	learning	in	a	large-scale	setting.



Thank	you!

Full	version:	arxiv.org/abs/1606.06582

Code	(GitHub):	bit.ly/cnn-dec


