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Abstract
Unsupervised learning and supervised learning
are key research topics in deep learning. How-
ever, as high-capacity supervised neural net-
works trained with a large amount of labels have
achieved remarkable success in many computer
vision tasks, the availability of large-scale la-
beled images reduced the significance of un-
supervised learning. Inspired by the recent
trend toward revisiting the importance of un-
supervised learning, we investigate joint super-
vised and unsupervised learning in a large-scale
setting by augmenting existing neural networks
with decoding pathways for reconstruction. First,
we demonstrate that the intermediate activations
of pretrained large-scale classification networks
preserve almost all the information of input im-
ages except a portion of local spatial details.
Then, by end-to-end training of the entire aug-
mented architecture with the reconstructive ob-
jective, we show improvement of the network
performance for supervised tasks. We evalu-
ate several variants of autoencoders, including
the recently proposed “what-where" autoencoder
that uses the encoder pooling switches, to study
the importance of the architecture design. Tak-
ing the 16-layer VGGNet trained under the Ima-
geNet ILSVRC 2012 protocol as a strong base-
line for image classification, our methods im-
prove the validation-set accuracy by a noticeable
margin.

1. Introduction
Unsupervised and supervised learning have been two asso-
ciated key topics in deep learning. One important appli-
cation of deep unsupervised learning over the past decade
was to pretrain a deep neural network, which was then
finetuned with supervised tasks (such as classification).
Many deep unsupervised models were proposed, such as
stacked (denoising) autoencoders (Bengio et al., 2007; Vin-

cent et al., 2010), deep belief networks (Hinton et al., 2006;
Lee et al., 2009), sparse encoder-decoders (Ranzato et al.,
2007; Kavukcuoglu et al., 2010), and deep Boltzmann ma-
chines (Salakhutdinov & Hinton, 2009). These approaches
significantly improved the performance of neural networks
on supervised tasks when the amount of available labels
were not large.

However, over the past few years, supervised learning with-
out any unsupervised pretraining has achieved even better
performance, and it has become the dominating approach
to train deep neural networks for real-world tasks, such
as image classification (Krizhevsky et al., 2012) and ob-
ject detection (Girshick et al., 2016). Purely supervised
learning allowed more flexibility of network architectures,
e.g., the inception unit (Szegedy et al., 2015) and the resid-
ual structure (He et al., 2016), which were not limited by
the modeling assumptions of unsupervised methods. Fur-
thermore, the recently developed batch normalization (BN)
method (Ioffe & Szegedy, 2015) has made the neural net-
work learning further easier. As a result, the once popu-
lar framework of unsupervised pretraining has become less
significant and even overshadowed (LeCun et al., 2015) in
the field.

Several attempts (e.g., Ranzato & Szummer (2008);
Larochelle & Bengio (2008); Sohn et al. (2013); Goodfel-
low et al. (2013)) had been made to couple the unsuper-
vised and supervised learning in the same phase, making
unsupervised objectives able to impact the network train-
ing after supervised learning took place. These methods
unleashed new potential of unsupervised learning, but they
have not yet been shown to scale to large amounts of la-
beled and unlabeled data. Rasmus et al. (2015) recently
proposed an architecture that is easy to couple with a clas-
sification network by extending the stacked denoising au-
toencoder with lateral connections, i.e., from encoder to
the same stages of the decoder, and their methods showed
promising semi-supervised learning results. Nonetheless,
the existing validations (Rasmus et al., 2015; Pezeshki
et al., 2016) were mostly on small-scale datasets like
MNIST. Recently, Zhao et al. (2015) proposed the “what-



Augmenting Supervised Neural Networks with Unsupervised Objectives for Large-scale Image Classification

where” autoencoder (SWWAE) by extending the stacked
convolutional autoencoder using Zeiler et al. (2011)’s “un-
pooling” operator, which recovers the locational details
(which was lost due to max-pooling) using the pooling
switches from the encoder. While achieving promising re-
sults on the CIFAR dataset with extended unlabeled data
(Torralba et al., 2008), SWWAE has not been demonstrated
effective for larger-scale supervised tasks.

In this paper, inspired by the recent trend toward simulta-
neous supervised and unsupervised neural network learn-
ing, we augment challenge-winning neural networks with
decoding pathways for reconstruction, demonstrating the
feasibility of improving high-capacity networks for large-
scale image classification. Specifically, we take a segment
of the classification network as the encoder and use the mir-
rored architecture as the decoding pathway to build several
autoencoder variants. The autoencoder framework is easy
to construct by augmenting an existing network without
involving complicated components. Decoding pathways
can be trained either separately from or together with the
encoding/classification pathway by the standard stochas-
tic gradient descent methods without special tricks, such
as noise injection and activation normalization.

This paper first investigates reconstruction properties of the
large-scale deep neural networks. Inspired by Dosovitskiy
& Brox (2016), we use the auxiliary decoding pathway of
the stacked autoencoder to reconstruct images from inter-
mediate activations of the pretrained classification network.
Using SWWAE, we demonstrate better image reconstruc-
tion qualities compared to the autoencoder using the un-
pooling operators with fixed switches, which upsamples an
activation to a fixed location within the kernel. This re-
sult suggests that the intermediate (even high-level) feature
representations preserve nearly all the information of the
input images except for the locational details “neutralized”
by max-pooling layers.

Based on the above observations, we further improve the
quality of reconstruction, an indication of the mutual infor-
mation between the input and the feature representations
(Vincent et al., 2010), by finetuning the entire augmented
architecture with supervised and unsupervised objectives.
In this setting, the image reconstruction loss can also im-
pact the classification pathway. To the contrary of conven-
tional beliefs in the field, we demonstrate that the unsuper-
vised learning objective posed by the auxiliary autoencoder
is an effective way to help the classification network obtain
better local optimal solutions for supervised tasks. To the
best of our knowledge, this work is the first to show that un-
supervised objective can improve the image classification
accuracy of deep convolutional neural networks on large-
scale datasets, such as ImageNet (Deng et al., 2009). We
summarize our main contributions as follows:

• We show that the feature representations learned by
high-capacity neural networks preserve the input in-
formation extremely well, despite the spatial invari-
ance induced by pooling. Our models can perform
high-quality image reconstruction (i.e., “inversion”)
from intermediate activations with the unpooling op-
erator using the known switches from the encoder.

• We successfully improve the large-scale image classi-
fication performance of a state-of-the-art classification
network by finetuning the augmented network with a
reconstructive decoding pathway to make its interme-
diate activations preserve the input information better.

• We study several variants of the resultant autoen-
coder architecture, including instances of SWWAE
and more basic versions of autoencoders, and provide
insight on the importance of the pooling switches and
the layer-wise reconstruction loss.

2. Related work
In terms of using image reconstruction to improve clas-
sification, our work is related to supervised sparse cod-
ing and dictionary learning work, which is known to ex-
tract sparse local features from image patches by sparsity-
constrained reconstruction loss functions. The extracted
sparse features are then used for classification purposes.
Mairal et al. (2009) proposed to combine the reconstruction
loss of sparse coding and the classification loss of sparse
features in a unified objective function. Yang et al. (2010)
extended this supervised sparse coding with max-pooling
to obtain translation-invariant local features.

Zeiler et al. (2010) proposed deconvolutional networks for
unsupervised feature learning that consist of multiple lay-
ers of convolutional sparse coding with max-pooling. Each
layer is trained to reconstruct the output of the previous
layer. Zeiler et al. (2011) further introduced the “unpooling
with switches” layer to deconvolutional networks to enable
end-to-end training.

As an alternative to sparse coding and discriminative con-
volutional networks, autoencoders (Bengio, 2009) are an-
other class of models for representation learning, in partic-
ular for the non-linear principal component analysis (Dong
& McAvoy, 1996; Scholz & Vigário, 2002) by minimiz-
ing the reconstruction errors of a bottlenecked neural net-
work. The stacked autoencoder (SAE) (Bengio et al., 2007)
is amenable for hierarchical representation learning. With
pooling-induced sparsity bottlenecks (Makhzani & Frey,
2015), the convolutional SAE (Masci et al., 2011) can learn
features from middle-size images. In these unsupervised
feature learning studies, sparsity is the key regularizer to
induce meaningful features in a hierarchy.
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By injecting noises or corruptions to the input, denoising
autoencoders (Vincent et al., 2008; 2010) can learn robust
filters to recover the uncorrupted input. Valpola (2015) fur-
ther added noises to intermediate layers of denoising auto-
encoders with lateral connections, which was called “lad-
der network”. Rasmus et al. (2015) combined a classifica-
tion task with the ladder network for semi-supervised learn-
ing, and they showed improved classification accuracy on
MNIST and CIFAR-10. Here, supervision from the labeled
data is the critical objective that prevents the autoencoder
from learning trivial features.

Zhao et al. (2015) proposed the SWWAE, a convolutional
autoencoder with unpooling layer, and combined it with
classification objective for semi-supervised learning. This
model integrates a discriminative convolutional network
(for classification) and a deconvolutional network (for re-
construction) and can be regarded as a unification of decon-
volutional networks, autoencoders and discriminative con-
volutional networks. They demonstrated promising results
on small scale datasets such as MNIST, SVHN and STL10.

Improving representation learning with auxiliary tasks is
not new (Suddarth & Kergosien, 1990). The idea behind
is that the harder the tasks are, the better representations
a network can learn. As an alternative to the autoencoder,
Lee et al. (2015)’s “deeply supervised network” incorpo-
rated classification objectives for intermediate layers, was
able to improve the top-layer classification accuracy for
reasonably large-scale networks (Wang et al., 2015). In
earlier work, Ranzato & Szummer (2008) conducted layer-
wise training by both classification and reconstruction ob-
jectives. Recently, more task-specific unsupervised ob-
jectives for image and video representation learning were
developed by using spatial context (Doersch et al., 2015)
and video continuity (Wang & Gupta, 2015). In contrast,
autoencoder-based methods are applicable in more general
scenarios.

3. Methods
In this section, we describe the training objectives and ar-
chitectures of the proposed augmented network. In Sec-
tion 3.1, we briefly review the architectures of recent net-
works for vision tasks, and present the general form of
our method. In Section 3.2, we augment the classification
network with auxiliary pathways composed of deconvolu-
tional architectures to build fully mirrored autoencoders, on
which we specify the auxiliary objective functions.

3.1. Unsupervised loss for intermediate representations

Deep neural networks trained with full supervision
achieved the state-of-the-art image classification per-
formance. Commonly used network architectures
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Figure 1. Example micro-architectures in macro-layers (the 3rd

macro-layer of VGGNet and its mirrored decoder). Encoder: a
number of convolutional layers followed by a max-pooling layer.
Decoder: the same number of deconvolutional layers preceded by
an unpooling layer, where the known pooling switches given by
the associated pooling layer are used for SWWAE.

(Krizhevsky et al., 2012) contain a single pathway of con-
volutional layers succeeded by nonlinear activation func-
tions and interleaved with max-pooling layers to gradu-
ally transform features into high-level representations and
gain spatial invariance at different scales. Recent networks
(Simonyan & Zisserman, 2015; Szegedy et al., 2015; He
et al., 2016; Szegedy et al., 2016) often nest a group of
convolutional layers before applying a max-pooling layer.
As these layers work together as the feature extractor for
a particular scale, we refer to the group as a macro-layer
(see the left half of Figure 1). Fully-connected inner-
product layer and/or global average-pooling layer follow
the convolution-pooling macro-layers to feed the top-layer
classifier. A network of L convolution-pooling macro-
layers is defined as

al = fl(al−1;φl), for l = 1, 2, . . . , L+ 1, (1)

where a0 = x is the input, fl(l = 1, 2, . . . , L) with the pa-
rameter φl is the lth macro-layer, and fL+1 denotes the rest
of the network, including the inner-product and classifica-
tion layers. The classification loss isC(x, y) = `(aL+1, y),
where y is the ground truth label, and ` is the cross-entropy
loss when using a softmax classifier.

Let x1, x2, . . . , xN denote a set of training images asso-
ciated with categorical labels y1, y2, . . . , yN . The neu-
ral network is trained by minimizing 1

N

∑N
i=1 C(xi, yi),

where we omit the L2-regularization term on the param-
eters. Though this objective can effectively learn a large-
scale network by gradient descent with a huge amount of
labeled data, it has two limitations. On the one hand, the
training of lower intermediate layers might be problem-
atic, because the gradient signals from the top layer can
become vanished (Hochreiter et al., 2001) on its way to
the bottom layer. Regularization by normalization (Ioffe
& Szegedy, 2015) can alleviate this problem, but will also
lead to large yet noisy gradients when networks are deep
(He et al., 2016). On the other hand, the data space is infor-
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(a) SAE-first (stacked architecture; reconstruction loss at the first layer) 

(b) SAE-all (stacked architecture; reconstruction loss at all layers) 

(c) SAE-layerwise (layer-wise architecture)

Figure 2. Model architectures of networks augmented with au-
toencoders. : nodes; : encoder macro-layer; : de-
coder macro-layer; : inner-product layer; : reconstruc-
tion loss; : classification loss.

mative by itself, but the fully supervised objective guides
the representation learning purely by the labels.

A solution to both problems is to incorporate auxiliary un-
supervised training objectives to the intermediate layers.
More specifically, the objective function becomes

1

N

N∑
i=1

(C(xi, yi) + λU(xi)) , (2)

where U(·) is the unsupervised objective function associat-
ing with one or more auxiliary pathways that are attached to
the convolution-pooling macro-layers in the original clas-
sification network.

3.2. Network augmentation with autoencoders

Given the network architecture for classification defined
in Eq. (1), we take the sub-network composed of all the
convolution-pooling macro-layers as the encoding path-
way, and generate a fully mirrored decoder network as
an auxiliary pathway of the original network. The inner-
product layers close to the top-level classifier may be ex-
cluded from the autoencoder, since they are supposed to be
more task-relevant.

Taking a network of five macro-layers as an example (e.g.,
VGGNet), Figure 2a shows the network augmented with a
stacked autoencoder. The decoding starts from the pooled
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Figure 3. Ladder network architectures Rasmus et al. (2015). :
nodes; : noisy nodes; : encoder macro-layer; : de-
coder macro-layer; : inner-product layer; : reconstruc-
tion loss; : classification loss; : parameter tying.

feature map from the 5th macro-layer (pool5) all the way
down to the image input. Reconstruction errors are mea-
sured at the network input (i.e., the first layer) so that we
term the model as “SAE-first”. More specifically, the de-
coding pathway is

âL = aL, âl−1 = fdecl (âl;ψl), x̂ = â0. (3)

with the loss USAE-first(x) = ‖x̂ − x‖22. Here, ψl’s are de-
coder parameters.

The auxiliary training signals of SAE-first emerge from
the bottom of the decoding pathway, and they get merged
with the top-down signals for classification at the last
convolution-pooling macro-layer into the encoder pathway.
To allow more gradient to flow directly into the preceding
macro-layers, we propose the “SAE-all” model by replac-
ing the unsupervised loss by USAE-all(x) =

∑L−1
l=0 γl‖âl −

al‖22 , which makes the autoencoder have an even better
mirrored architecture by matching activations for all the
macro-layer (illustrated in Figure 2b).

In Figure 2c, we propose one more autoencoder vari-
ant with layer-wise decoding architecture, termed “SAE-
layerwise”. It reconstructs the output activations of ev-
ery macro-layer to its input. The auxiliary loss of SAE-
layerwise is the same as SAE-all, i.e., USAE-layerwise(x) =
USAE-all(x), but the decoding pathway is replaced by
âl−1 = fdecl (al;ψl).

SAE-first/all encourages top-level convolution features to
preserve as much information as possible. In contrast, the
auxiliary pathways in SAE-layerwise focus on inverting the
clean intermediate activations (from the encoder) to the in-
put of the associated macro-layer, admitting parallel layer-
wise training. We investigated both in Section 4.3 and take
SAE-layerwise decoders as architectures for efficient pre-
training.

In Figure 1, we illustrate the detailed architecture of f3(·)
and fdec3 (·) for Simonyan & Zisserman (2015)’s 16-layer
VGGNet. Inspired by Zeiler et al. (2011), we use Zhao
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et al. (2015)’s SWWAE as the default for the micro-
architecture. More specifically, we record the pooling
switches (i.e., the locations of the local maxima) in the en-
coder, and unpool activations by putting the elements at the
recorded locations and filling the blanks with zeros. Un-
pooling with known switches can recover the local spatial
variance eliminated by the max-pooling layer, avoiding the
auxiliary objectives from deteriorating the spatial invari-
ance of the encoder filters, which is arguably important for
classification. We studied the autoencoders with fixed and
known unpooling switch, respectively. In Section 4.2 we
efficiently trained the autoencoders augmented from a pre-
trained deep non-BN network, where the decoder is hard to
learn from scratch.

Rasmus et al. (2015)’s ladder network (Figure 3) is a more
sophisticated way to augment existing sequential architec-
tures with autoencoders. It is featured by the lateral con-
nections (vertical in Figure 3) and the combinator functions
that merge the lateral and top-down activations. Due to the
lateral connections, noise must be added to the encoder;
otherwise, the combinator function can trivially copy the
clean activations from the encoder. In contrast, no autoen-
coder variant used in our work has “lateral" connections,
which makes the overall architectures of our models sim-
pler and more standard. In SWWAE, the pooling switch
connections do not bring the encoder input directly to the
decoder, so they cannot be taken as the lateral connections
like in the “ladder network”. Moreover, noise injection is
also unnecessary for our models. We leave it as an open
question whether denoising objectives can help with the
augmented (what-where) autoencoder for large-scale data.

4. Experiments
In this section, we evaluated different variants of the aug-
mented network for image reconstruction and classifica-
tion on ImageNet ILSVRC 2012 dataset, using the train-
ing set for training, and validation set for evaluation.
Our experiments were mainly based on the 16-layer VG-
GNet (Simonyan & Zisserman, 2015).1 To compare with
existing methods on inverting neural networks (Dosovit-
skiy & Brox, 2016), we also partially used Krizhevsky
et al. (2012)’s network, termed AlexNet, trained on
ILSVRC2012 training set. Our code and trained mod-
els can be obtained at http://www.ytzhang.net/
software/recon-dec/

4.1. Training procedure

Training a deep neural network is non-trivial. Therefore,
we propose the following strategy to make the networks

1The pretrained network was obtained from http://www.
robots.ox.ac.uk/~vgg/research/very_deep/.

augmented from the classification network efficiently train-
able.

1. We initialized the encoding pathway with the pre-
trained classification network, and the decoding path-
ways with Gaussian random initialization.

2. For any variant of the augmented network, we fixed
the parameters for the classification pathway and
trained the layer-wise decoding pathways of the SAE-
layerwise network.

3. For SAE-first/all, we initialized the decoding path-
way with the pretrained SAE-layerwise parameters
and finetuned the decoder. (Skip this step for SAE-
layerwise.)

4. We finetuned all the decoding and the encod-
ing/classification pathways together with a reduced
learning rate.

Up to Step 3, we trained the decoding pathways with the
classification pathway fixed. For all the four steps, we
trained the networks by mini-batch stochastic gradient de-
scent (SGD) with the momentum 0.9.

In Step 2, the SAE-layerwise model has separate sub-
pathways for decoding, so the training can be done in par-
allel for every macro-layer. The decoding sub-network for
each macro-layer was relatively “shallow” so that it is easy
to learn. We found the learning rate annealing not criti-
cal for SAE-layerwise pretraining. Proper base learning
rates could make it sufficiently converged within 1 epoch.
The chosen layer-wise learning rates VGGNet were sum-
marized in Appendix A1 (Table A-1). We used a small
mini-batch size of 16 for SGD.

For very deep networks, training the decoding pathways
of SAE-first/all from random initialization is difficult when
batch normalization is absent (e.g., in the VGGNet). Ini-
tializing with SAE-layerwise as in Step 3 is critical to ef-
ficiently train the stacked decoding pathways of SAE-first
and SAE-all.

For SAE-all (Step 3, 4) and SAE-layerwise (Step 4), we
balanced the reconstruction loss among different macro-
layer, where the criterion was to make the weighted loss for
every layer comparable to each other. We summarized the
balancing weights for VGGNet in Appendix A1 (Table A-
1). The SGD mini-batch size was set to a larger value (here,
64) in Step 4 for better stability.

We adopted commonly used data augmentation schemes.
As to VGGNet, we randomly resized the image to
[256, 512] pixels with respect to the shorter edge, and then
randomly cropped a 224 × 224 patch (or its horizontally
mirrored image) to feed into the network. As to AlexNet,
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Layer image pool1 pool2 conv3 conv4 pool5 fc6 fc7 fc8

Dosovitskiy &
Brox (2016)

SWWAE-first
(known

unpooling
switches)

Figure 4. AlexNet reconstruction on ImageNet ILSVRC2012 validation set. See Appendix A2.5 (Figure A-4) for more results.

Layer image pool1 pool2 pool3 pool4 pool5

SAE-first (fixed
unpooling
switches)

SWWAE-first
(known unpooling

switches)

Figure 5. VGGNet reconstruction on ImageNet ILSVRC2012 validation set. See Appendix A2.5 (Figure A-4) for more results.

we followed Krizhevsky et al. (2012)’s data augmentation
scheme, cropping an image at the center to make it square
with the shorter edge unchanged, resizing the square to
256×256, and randomly sampling a 227×227 patch or its
horizontally mirrored counterpart to feed the network. We
ignored the RGB color jittering so as to always take ground
truth natural images as the reconstruction targets.

Our implementation was based on the Caffe framework (Jia
et al., 2014).

4.2. Image reconstruction via decoding pathways

Using reconstructive decoding pathways, we can visualize
the learned hierarchical features by inverting a given clas-
sification network, which is a useful way to understand the
learned representations. The idea of reconstructing the en-
coder input from its intermediate activations was first ex-
plored by Dosovitskiy & Brox (2016), in contrast to vi-
sualizing a single hidden node (Zeiler & Fergus, 2014)
and dreaming out images (Mahendran & Vedaldi, 2015).
As the best existing method for inverting neural networks
with no skip link, it used unpooling with fixed switches to
upsample the intermediate activation maps. This method
demonstrated how much information the features produced
by each layer could preserve for the input. As shown in
Figure 4 (the top row), not surprisingly, the details of the in-
put image gradually diminished as the representations went
through higher layers.

The commonly used classification network mainly con-
sists of convolution/inner-product and max-pooling oper-
ators. Based only on Dosovitskiy & Brox (2016)’s visual-
ization, it is hard to tell how much the two types of opera-
tors contribute to the diminishing of image details, respec-
tively. Note that our SAE-first architecture is comparable
to Dosovitskiy & Brox (2016)’s model except for the better
mirrored architectures between the encoder and decoder,
which allow extending to SWWAE. Using the SWWAE-
first network (“what-where” version of SAE-first), we were
able to revert the max-pooling more faithfully, and to study
the amount of information that the convolutional filters and
inner-product coefficients preserved.

To compare with Dosovitskiy & Brox (2016), we aug-
mented AlexNet to the corresponding SWWAE-first ar-
chitecture.2 Unlike in Section 3, we built SWWAE-first
network starting from every layer, i.e., decoding path-
way could start from conv1 to fc8. Each macro-layer
in AlexNet included exactly one convolutional or inner-
product layer. We trained the decoding pathway with the
encoding/classification pathway fixed.

As shown in Figure 4, the images reconstructed from any

2The decoding pathway almost fully mirrored the classifica-
tion network except the first layer (conv1). This convolutional
layer used the stride 4 rather than 1, which approximates two ad-
ditional 2× 2 pooling layers. Therefore, we used three deconvo-
lutional layers to inverse the conv1 layer.
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layer, even including the top 1000-way classification layer,
were almost visually perfect.3 Only the local contrast and
color saturation became slightly different from the original
images as the layer went higher. The surprisingly good re-
construction quality suggests that the features produced by
AlexNet preserved nearly all the information of the input
except for the spatial invariance gained by the max-pooling
layers.

As commonly believed, learning task-relevant features for
classification and preserving information were conflicting
to some extent, since the “nuisance” should be removed for
supervised tasks. According to our experiments, the loca-
tional details in different scales were almost the only in-
formation significantly neutralized by the deep neural net-
work. For the convolutional and inner-product layers, it
seems important to encode the input into a better (e.g., task-
relevant) form without information loss.

We conducted similar experiments based on the 16-layer
VGGNet. As no results using the unpooling with fixed
switches had been reported yet, we trained the decod-
ing pathways for both SAE-first (with fixed unpool-
ing switches) and SWWAE-first (with known unpooling
switches). We described the detailed training strategy in
Section 4.3. In Figure 5, we showed the reconstruction ex-
amples up to the 5th macro-layer (the 13th layer). Images
reconstructed by SAE-first were blurry for higher layers. In
contrast, SWWAE-first could well recover the shape details
from the pool5 features. In addition, the SWWAE-first
model could also reasonably reconstruct non-ImageNet and
even non-natural images like text screenshots, depth maps,
and cartoon pictures, as shown in Appendix A2.5 (Fig-
ure A-3). These results suggest that the high-level feature
representations were also adaptable to other domains.

Since the architecture was much deeper than AlexNet, VG-
GNet resulted in noisier reconstruction. Assuming the abil-
ity of preserving information as a helpful property for deep
neural network, we took the reconstruction loss as an aux-
iliary objective function for training the classification net-
work, as will be described in Section 4.3.

4.3. Image classification with augmented architectures

We took as the baseline the 16-layer VGGNet (Simonyan &
Zisserman (2015)’s Model D), one of the best open source
convolutional neural networks for large-scale image classi-
fication.

We needed only to use the classification pathway for test-
ing. We report results with the following two schemes
for sampling patches to show both more ablative and more

3For the fc6 and fc7 layers, we applied inner-product fol-
lowed by relu nonlinearity; for the fc8 layer, we applied only
inner-product, but not softmax nonlinearity.

practical performance on single networks.

Single-crop We resized the test image, making its shorter
edge 256 pixels, and used only the single 224 × 224
patch (without mirroring) at the center to compute
the classification score. It allowed us to examine the
tradeoff between training and validation performance
without complicated post-processing.

Convolution We took the VGGNet as a fully convolu-
tional network and used a global average-pooling to
fuse the classification scores obtained at different lo-
cations in the grid. The test image was resized to 256
pixels for the shorter edge and mirrored to go through
the convolution twice. It was a replication of Sec-
tion 3.2 of (Simonyan & Zisserman, 2015).

We report the experimental results in Table 1. Several VG-
GNet (classification pathway only) results are presented
to justify the validity of our baseline implementation. As
a replication of Simonyan & Zisserman (2015)’s “single-
scale” method, our second post-processing scheme could
achieve similar comparable accuracy. Moreover, finetun-
ing the pretrained VGGNet model further without the aug-
mented decoding network using the same training proce-
dure did not lead to significant performance change.

As a general trend, all of the networks augmented with au-
toencoders outperformed the baseline VGGNet by a no-
ticeable margin. In particular, compared to the VGGNet
baseline, the SWWAE-all model reduced the top-1 errors
by 1.66% and 1.18% for the single-crop and convolution
schemes, respectively. It also reduced the top-5 errors by
1.01% and 0.81%, which are 10% and 9% relative to the
baseline errors.

To the best of our knowledge, this work provides the first
experimental results to demonstrate the effectiveness of un-
supervised learning objectives for improving the state-of-
the-art image classification performance on large-scale re-
alistic datasets. For SWWAE-all, the validation accuracy
in Table 1 was achieved in ∼16 epochs, which took 4~5
days on a workstation with 4 Nvidia Titan X GPUs. Taking
pretrained VGGNet as the reference, 75% of the relative
accuracy improvement (∼1.25% absolute top-1 accuracy
improvement) could be achieved in ∼4 epochs (∼1 day).

Apart from the general performance gain due to reconstruc-
tive decoding pathways, the architecture changes could re-
sult in relatively small differences. Compared to SWWAE-
layerwise, SWWAE-all led to slightly higher accuracy,
suggesting the usefulness of posing a higher requirement
on the top convolutional features for preserving the input
information. The slight performance gain of SWWAE-
all over SAE-all with fixed unpooling switches indicates
that the switch connections could alleviate the difficulty
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Sampling Single-crop (center patch, no mirroring) Convolution
Errors Top-1 Top-5 Top-1 Top-5
Model Train Val. Train Val. Validation

VGGNet † – – – – 27.0∗ 8.8∗

VGGNet † – – – – 26.8∗∗ 8.7∗∗

VGGNet 17.43 29.05 4.02 10.07 26.97 8.94
SAE-first 15.36 27.70 3.13 09.28 26.09 8.30
SAE-all 15.64 27.54 3.23 09.17 26.10 8.21

SAE-layerwise 16.20 27.60 3.42 09.19 26.06 8.17
SWWAE-first 15.10 27.60 3.08 09.23 25.87 8.14
SWWAE-all 15.67 27.39 3.24 09.06 25.79 8.13

SWWAE-layerwise 15.42 27.53 3.32 09.10 25.97 8.20
† The numbers in the last rows are from Table 3 (Model D) in Simonyan & Zisserman (2015) (the most comparable to our settings).4

∗ from a slightly different model trained with single-scale (256px) data augmentation. ∗∗ Test scale is 384px.

Table 1. Classification errors on ImageNet ILSVRC-2012 validation dataset based on 16-layer VGGNet. SAE models use the unpooling
with fixed switches, and SWWAE models uses the unpooling with known switches.

of learning a stacked convolutional autoencoder. In the
meanwhile, it also suggests that, without pooling switches,
the decoding pathway can benefit the classification net-
work learning similarly. Using the unpooling with fixed
switches, the decoding pathway may not be limited for re-
construction, but can also be designed for the structured
outputs that are not locationally aligned with the input im-
ages (e.g, adjacent frames in videos, another viewpoint of
the input object).

To figure out whether the performance gain was due to the
potential regularization effects of the decoding pathway or
not, we evaluated the networks on 50,000 images randomly
chosen from the training set. Interestingly, the networks
augmented with autoencoders achieved lower training er-
rors than the baseline VGGNet. Hence, rather than regular-
izing, it is more likely that the auxiliary unsupervised loss
helped the CNN to find better local optima in supervised
learning. Compared to SAE/SWWAE-all, SAE/SWWAE-
first led to lower training errors but higher validation errors,
a typical symptom of slight overfitting. Thus, incorporat-
ing layer-wise reconstruction loss was an effective way to
regularize the network training.

We provide more discussion for the decoding pathways in
Appendix A2, including image reconstruction results af-
ter finetuning the augmented networks (Appendix A2.5),
training curves (Appendix A2.2), and comparison be-
tween the pretrained and finetuned convolution filters (Ap-
pendix A2.1).

4In our experiments, the 16-layer VGGNet (Simonyan & Zis-
serman (2015)’s Model D) achieved 10.07% for the single-crop
scheme and 8.94% for the convolution scheme (in a single scale),
which is comparable to 8.8% in Table 3 of (Simonyan & Zisser-
man, 2015). In that table, the best reported number for the Model
D was 8.1%, but it is trained and tested using a different resizing
and cropping method, thus not comparable to our results.

5. Conclusion
We proposed a simple and effective way to incorporate
unsupervised objectives into large-scale classification net-
work learning by augmenting the existing network with re-
constructive decoding pathways. Using the resultant au-
toencoder for image reconstruction, we demonstrated the
ability of preserving input information by intermediate rep-
resentation as an important property of modern deep neural
networks trained for large-scale image classification. We
leveraged this property further by training the augmented
network composed of both the classification and decoding
pathways. This method improved the performance of the
16-layer VGGNet, one of the best existing networks for im-
age classification by a noticeable margin. We investigated
different variants of the autoencoder, and showed that 1) the
pooling switch connections between the encoding and de-
coding pathways were helpful, but not critical for improv-
ing the performance of the classification network in large-
scale settings; 2) the decoding pathways mainly helped the
supervised objective reach a better optimum; and 3) the
layer-wise reconstruction loss could effectively regularize
the solution to the joint objective. We hope this paper will
inspire further investigations on the use of unsupervised
learning in a large-scale setting.

Acknowledgements
This work was funded by Software R&D Center, Samsung
Electronics Co., Ltd; ONR N00014-13-1-0762; and NSF
CAREER IIS-1453651. We also thank NVIDIA for do-
nating K40c and TITAN X GPUs. We thank Jimei Yang,
Seunghoon Hong, Ruben Villegas, Wenling Shang, Kihyuk
Sohn, and other collaborators for helpful discussions.

8



Augmenting Supervised Neural Networks with Unsupervised Objectives for Large-scale Image Classification

References
Bengio, Y. Learning deep architectures for ai. Foundation

and Trends in Machine Learning, 2(1):1–127, January
2009.

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H.
Greedy layer-wise training of deep networks. In NIPS,
2007.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and
Fei-Fei, L. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009.

Doersch, C., Gupta, A., and Efros, A. A. Unsupervised
visual representation learning by context prediction. In
ICCV, 2015.

Dong, D. and McAvoy, T. J. Nonlinear principal compo-
nent analysis based on principal curves and neural net-
works. Computers & Chemical Engineering, 20(1):65–
78, 1996.

Dosovitskiy, A. and Brox, T. Inverting visual representa-
tions with convolutional networks. In CVPR, 2016.

Girshick, R., Donahue, J., Darrell, T., and Malik, J.
Region-based convolutional networks for accurate object
detection and segmentation. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 38(1):142–158,
Jan 2016.

Goodfellow, I., Mirza, M., Courville, A., and Bengio, Y.
Multi-prediction deep boltzmann machines. In NIPS,
2013.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In CVPR, 2016.

Hinton, G. E., Osindero, S., and Teh, Y.-W. A fast learning
algorithm for deep belief nets. Neural computation, 18
(7):1527–1554, 2006.

Hochreiter, S., Bengio, Y., Frasconi, P., and Schmidhuber,
J. Gradient flow in recurrent nets: the difficulty of learn-
ing long-term dependencies. In A Field Guide to Dynam-
ical Recurrent Networks. 2001.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerat-
ing deep network training by reducing internal covariate
shift. In ICML, 2015.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J.,
Girshick, R., Guadarrama, S., and Darrell, T. Caffe:
Convolutional architecture for fast feature embedding.
arXiv:1408.5093, 2014.

Kavukcuoglu, K., Ranzato, M. A., and LeCun, Y. Fast in-
ference in sparse coding algorithms with applications to
object recognition. arXiv:1010.3467, 2010.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In NIPS, 2012.

Larochelle, H. and Bengio, Y. Classification using discrim-
inative restricted boltzmann machines. In ICML, 2008.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. Na-
ture, 521(7553):436–444, 2015.

Lee, C.-Y., Xie, S., Gallagher, P., Zhang, Z., and Tu, Z.
Deeply-supervised nets. In AISTATS, 2015.

Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. Convo-
lutional deep belief networks for scalable unsupervised
learning of hierarchical representations. In ICML, 2009.

Mahendran, A. and Vedaldi, A. Understanding deep image
representations by inverting them. In CVPR, 2015.

Mairal, J., Ponce, J., Sapiro, G., Zisserman, A., and Bach,
F. R. Supervised dictionary learning. In NIPS, 2009.

Makhzani, A. and Frey, B. J. Winner-take-all autoencoders.
In NIPS, 2015.

Masci, J., Meier, U., Cireşan, D., and Schmidhuber,
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Appendices

A1. Parameters for VGGNet-based models

Macro- Learning rate Loss weighting 1

layer SAE-layerwise SAE-layerwise/all
1 3× 10−9 1× 10−4

2 1× 10−8 1× 10−12

3 3× 10−12 1× 10−12

4 1× 10−12 1× 10−12

5 1× 10−11 1× 10−10

LR: learning rate; 1 the top-level softmax is weighted by 1.

Table A-1. Layer-wise training parameters for networks augmented from VGGNet

We report the learning parameters for 16-layer VGGNet-based model in Table A-1. We chose the learning rates that lead to
the largest decrease in the reconstruction loss in the first 2000 iterations for each layer. The “loss weighting” are balancing
factors for reconstruction losses in different layers varied to make them comparable in magnitude. In particular, we com-
puted image reconstruction loss against RGB values normalized to [0,1], which are different in scale from intermediate
features. We also did not normalize the reconstruction loss with feature dimensions for any layer.

A2. More experimental results and discussions
A2.1. Learned filters

Compared to the baseline VGGNet, the finetuned SWWAE-all model demonstrated ∼ 35% element-wise relative change
of the filter weights on average for all the layers. A small portion of the filters showed stronger contrast after finetuning.
Qualitatively, the finetuned filters kept the pretrained visual shapes. In Figure A-1, we visualize the first-layer 3 × 3
convolution filters.

(a) Pretrained VGGNet (b) Finetuned SWWAE-all

Figure A-1. Visualization of the normalizaed first-layer convolution filters in 16-layer VGGNet-based network. The filters of the
SWWAE-all model had nearly the same patterns to those of the pretrained VGGNet, but showed stronger contrast. It is more clear
see the difference if displaying the two images alternatively in the same place. (online example: http://www.ytzhang.net/
files/publications/2016-icml-recon-dec/filters/)

A2.2. Training curve

In Figure A-2, we report the training curves of validation accuracy for SWWAE-all, where the pretrained VGGNet classi-
fication network and decoder network were taken as the starting point.
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Figure A-2. Training curves for the single-crop validation accuracy of VGGNet-based SWWAE-all models.

A2.3. Selection of different model variants

The performance for different variants of the augmented network are comparable, but we can still choose the best available
one. In particular, we provide following discussions.

• Since the computational costs were similar for training and the same for testing, we can use the best available ar-
chitecture depending on tasks. For example, when using decoding pathways for spatially corresponded tasks like
reconstruction (as in our paper) and segmentation, we can use the SWWAE. For more general objectives like pre-
dicting next frames, where pooling switches are non-transferrable, we can still use ordinary SAEs to get competitive
performance.

• S(WW)AE-first has less hyper-parameters than S(WW)AE-all, and can be trained first for quick parameter search. It
can be switched to *-all for better performance.

A2.4. Ladder networks

We tried training a ladder network following the same procedures of pretraining auxiliary pathways and finetuning the
whole network as for our models, which is also similar to Rasmus et al. (2015)’s strategy. We used the augmented multi-
layer perceptron (AMLP) combinator, which Pezeshki et al. (2016) proposed as the best combinator function. Different
from the previous work conducted on the variants of MNIST dataset, the pretrained VGGNet does not have batch normal-
ization (BN) layers, which pushed us to remove the BN layers from the ladder network. However, BN turned out to be
critical for proper noise injection, and the non-BN ladder network did not perform well. It might suggest that our models
are easier to pair with a standard convolutional network and train on large-scale datasets.

A2.5. Image reconstruction

In Figure A-3, we visualize the images reconstructed by the pretrained decoder of SWWAE-first and the final models for
SWWAE-first/all, and reported the L2 reconstruction loss on the validation set. Finetuning the entire networks also resulted
in better reconstruction quality, which is consistent with our assumption that enhancing the ability of preserving input
information can lead to better features for image classification. Since the shape details had already been well recovered
by the pretrained decoder, the finetuned SWWAE-first/all mainly improved the accuracy of colors. Note that the decoder
learning is more difficult for SWWAE-all than SWWAE-first, which explains its slightly higher reconstruction loss and
better regularization ability.

In Figure A-4 and A-5, we showed more examples for reconstructing input images from pretrained neural network features
for AlexNet and VGGNet.
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Model L2 Loss ImageNet Non-ImageNet 1

Ground truth -

SWWAE-first
(Pretrained,

fixing encoder)
513.4

SWWAE-first
(Finetuned with

encoder)
462.2

SWWAE-all
(Finetuned with

encoder)
493.0

1 The first three images are from morguefile.com; the fourth is a screenshot of Wikipedia; the fifth is a depth image from NYU
dataset; the last is used with permission from Debbie Ridpath Ohi at Inkygirl.com

Figure A-3. Image reconstruction from pool5 features to images. The reconstruction loss is computed on the ILSVRC2012 validation set
and measured with L2-distance with the ground truth (RGB values are in [0, 1]). The first 2 example images are from the ILSVRC2012
validation set (excluding the 100 categories). The rest are not in ImageNet.
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Figure A-4. AlexNet reconstruction on ImageNet ILSVRC2012 validation set. (Best viewed when zoomed in on a screen.)
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Figure A-5. VGGNet reconstruction on ImageNet ILSVRC2012 validation set. (Best viewed when zoomed in on a screen.)
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