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Abstract
Deep neural networks have achieved impressive success

in large-scale visual object recognition tasks with a prede-
fined set of classes. However, recognizing objects of novel
classes unseen during training still remains challenging.
The problem of detecting such novel classes has been ad-
dressed in the literature, but most prior works have focused
on providing simple binary or regressive decisions, e.g., the
output would be “known,” “novel,” or corresponding con-
fidence intervals. In this paper, we study more informative
novelty detection schemes based on a hierarchical classifi-
cation framework. For an object of a novel class, we aim
for finding its closest super class in the hierarchical taxon-
omy of known classes. To this end, we propose two different
approaches termed top-down and flatten methods, and their
combination as well. The essential ingredients of our meth-
ods are confidence-calibrated classifiers, data relabeling,
and the leave-one-out strategy for modeling novel classes
under the hierarchical taxonomy. Furthermore, our method
can generate a hierarchical embedding that leads to im-
proved generalized zero-shot learning performance in com-
bination with other commonly-used semantic embeddings.

1. Introduction
Object recognition in large-scale image datasets has

achieved impressive performance with deep convolutional
neural networks (CNNs) [11, 12, 29, 31]. The standard
CNN architectures are learned to recognize a predefined set
of classes seen during training. However, in practice, a new
type of objects could emerge (e.g., a new kind of consumer
product). Hence, it is desirable to extend the CNN archi-
tectures for detecting the novelty of an object (i.e., deciding
if the object does not match any previously trained object
classes). There have been recent efforts toward developing
efficient novelty detection methods [2, 13, 17, 20, 25], but
most of the existing methods measure only the model uncer-
tainty, i.e., confidence score, which is often too ambiguous
for practical use. For example, suppose one trains a classi-
fier on an animal image dataset as in Figure 1. A standard
novelty detection method can be applied to a cat-like im-
age to evaluate its novelty, but such a method would not tell

animal

dog

Pomeranian Welsh corgi

cat

Persian cat Siamese cat

Test image:

True label: Siamese cat Angola cat Dachshund Pika

Prior works: Siamese cat novel novel novel

Ours: Siamese cat novel cat novel dog novel animal

Figure 1: An illustration of our proposed hierarchical nov-
elty detection task. In contrast to prior novelty detection
works, we aim to find the most specific class label of a novel
data on the taxonomy built with known classes.

whether the novel object is a new species of cat unseen in
the training set or a new animal species.

To address this issue, we design a new classification
framework for more informative novelty detection by uti-
lizing a hierarchical taxonomy, where the taxonomy can
be extracted from the natural language information, e.g.,
WordNet hierarchy [22]. Our approach is also motivated by
a strong empirical correlation between hierarchical seman-
tic relationships and the visual appearance of objects [5].
Under our scheme, a taxonomy is built with the hypernym-
hyponym relationships between known classes such that ob-
jects from novel classes are expected to be classified into the
most relevant label, i.e., the closest class in the taxonomy.
For example, as illustrated in Figure 1, our goal is to dis-
tinguish “new cat,” “new dog,” and “new animal,” which
cannot be achieved in the standard novelty detection tasks.
We call this problem hierarchical novelty detection task.

In contrast to standard object recognition tasks with a
closed set of classes, our proposed framework can be useful
for extending the domain of classes to an open set with tax-
onomy information (i.e., dealing with any objects unseen in
training). In practical application scenarios, our framework
can be potentially useful for automatically or interactively
organizing a customized taxonomy (e.g., company’s prod-
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uct catalog, wildlife monitoring, personal photo library) by
suggesting closest categories for an image from novel cat-
egories (e.g., new consumer products, unregistered animal
species, untagged scenes or places).

We propose two different approaches for hierarchical
novelty detection: top-down and flatten methods. In the top-
down method, each super class has a confidence-calibrated
classifier which detects a novel class if the posterior cate-
gorical distribution is close to a uniform distribution. Such a
classifier was recently studied for a standard novelty detec-
tion task [19], and we extend it for detecting novel classes
under our hierarchical novelty detection framework. On the
other hand, the flatten method computes a softmax proba-
bility distribution of all disjoint classes. Then, it predicts
the most likely fine-grained label, either a known class or a
novel class. Although the flatten method simplifies the full
hierarchical structure, it outperforms the top-down method
for datasets of a large hierarchical depth.

Furthermore, we combine two methods for utilizing their
complementary benefits: top-down methods naturally lever-
age the hierarchical structure information, but the classifi-
cation performance might be degraded due to the error ag-
gregation. On the contrary, flatten methods have a single
classification rule that avoids the error aggregation, but the
classifier’s flat structure does not utilize the full information
of hierarchical taxonomy. We empirically show that com-
bining the top-down and flatten models further improves hi-
erarchical novelty detection performance.

Our method can also be useful for generalized zero-shot
learning (GZSL) [4, 33] tasks. GZSL is a classification task
with classes both seen and unseen during training, given that
semantic side-information for all test classes is provided.
We show that our method can generate a hierarchical em-
bedding that leads to improved GZSL performance in com-
bination with other commonly-used semantic embeddings.

2. Related work
Novelty detection. For robust prediction, it is desirable to
detect a test sample if it looks unusual or significantly dif-
fers from the representative training data. Novelty detection
is a task recognizing such abnormality of data (see [14, 25]
for a survey). Recent novelty detection approaches leverage
the output of deep neural network classification models. A
confidence score about novelty can be measured by taking
the maximum predicted probability [13], ensembling such
outputs from multiple models [17], or synthesizing a score
based on the predicted categorical distribution [2]. There
have also been recent efforts toward confidence-calibrated
novelty detection, i.e., calibrating how much the model is
certain with its novelty detection, by postprocessing [21] or
learning with joint objective [19].
Object recognition with taxonomy. Incorporating the hi-
erarchical taxonomy for object classification has been in-

vestigated in the literature, either to improve classification
performance [6, 34], or to extend the classification tasks to
obtain more informative results [8, 36]. Specifically for the
latter purpose, Deng et al. [8] gave some reward to super
class labels in a taxonomy and maximized the expected re-
ward. Zhao et al. [36] proposed an open set scene parsing
framework, where the hierarchy of labels is used to estimate
the similarity between the predicted label and the ground
truth. In contemporary work, Simeone et al. [28] proposed
a hierarchical classification and novelty detection task for
the music genre classification, but their settings are differ-
ent from ours: in their task, novel classes do not belong to
any node in the taxonomy. Thus, their method cannot detect
classes which are novel but similar to existing classes. To
the best of our knowledge, our work is the first to propose
a unified framework for hierarchical novelty detection and
visual object recognition.
Generalized zero-shot learning (GZSL). We remark that
GZSL [4, 33] can be thought as addressing a similar task
as ours. While the standard ZSL tasks test classes unseen
during training only, GZSL tasks test both seen and unseen
classes such that the novelty is automatically detected if the
predicted label is not a seen class. However, the primary
focus of ZSL and GZSL tasks is on transfer learning for a
new domain, and they assume that semantic information of
all test classes is given, e.g., attributes [1, 18, 27] or text
description [3, 9, 10, 23, 26, 30] of the objects. Therefore,
GZSL cannot recognize a novel class if prior knowledge
about the specific novel class is not provided, i.e., it is lim-
ited to classifying objects with prior knowledge, regardless
of their novelty. Compared to GZSL, the advantages of the
proposed hierarchical novelty detection are that 1) it does
not require any prior knowledge on novel classes but only
utilizes the taxonomy of known classes, 2) a reliable super
class label can be more useful and human-friendly than an
error-prone prediction over excessively subdivided classes,
and 3) high-quality taxonomies are available off-the-shelf
and they are better interpretable than latent semantic em-
beddings. In Section 5, we also show that our models for
hierarchical novelty detection can also generate a hierarchi-
cal embedding such that combination with other semantic
embeddings improves the GZSL performance.

3. Approach
In this section, we define terminologies to describe hier-

archical taxonomy and then propose models for hierarchical
classification combined with novelty detection.

3.1. Taxonomy
A taxonomy represents a hierarchical relationship

among classes, where each node in the taxonomy corre-
sponds to a class or a set of indistinguishable classes.1

1 For example, if a class has only one known child class, these two
classes are indistinguishable as they are trained with exactly the same data.
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Figure 2: Illustration of two proposed approaches. In the
top-down method, classification starts from the root class,
and propagates to one of its children until the prediction
arrives at a known leaf class (blue) or stops if the prediction
is not confident, which means that the prediction is a novel
class whose closest super class is the predicted class. In the
flatten method, we add a virtual novel class (red) under each
super class as a representative of all novel classes, and then
flatten the structure for classification.

We define three types of classes as follows: 1) known leaf
classes are nodes with no child, which are known and seen
during training, 2) super classes are ancestors of the leaf
classes, which are also known, and 3) novel classes are un-
seen during training, so they do not explicitly appear in the
taxonomy.2 We note that all known leaf and novel classes
have no child and are disjoint, i.e., they are neither ancestor
nor descendant of each other. In the example in Figure 1,
four species of cats and dogs are leaf classes, “cat,” “dog,”
and “animal” are super classes, and any other classes un-
seen during training, e.g., “Angola cat,” “Dachshund,” and
“Pika” are novel classes.

In the proposed hierarchical novelty detection frame-
work, we first build a taxonomy with known leaf classes
and their super classes, and at test time, we aim at predict-
ing in the most fine-grained way using the taxonomy. In
other words, if an image is predicted as novel, then we try
to assign one of the super classes, implying that the input is
in a novel class whose closest known class in the taxonomy
is that super class.

To represent the hierarchical relationship, let T be the
taxonomy of known classes, and for a class y, P(y) be the
set of parents, C(y) be the set of children, A(y) be the set
of ancestors including itself, and N (y) be the set of novel
classes whose closest known class is y. And let L(T ) be
the set of all descendant leaves under a taxonomy T .

As no prior knowledge ofN (y) is provided during train-
ing and testing, all classes in N (y) are indistinguishable
in our hierarchical novelty detection framework. Thus, we
treat N (y) as a single class in our analysis.

2 We note that “novel” in our task is similar but different from “un-
seen” commonly referred in ZSL works; while class-specific semantic in-
formation for unseen classes must be provided in ZSL, such information
for novel classes is not required in our task.

3.2. Top-down method
A natural way to perform classification using a hierarchi-

cal taxonomy is following top-down classification decisions
starting from the root class, as shown in the top of Figure 2.
Let (x, y) ∼ Pr(x, y|s) be a pair of an image and its la-
bel sampled from data distribution at a super class s, where
y ∈ C(s)∪N (s). Then, the classification rule is defined as

ŷ =

argmax
y′

Pr(y′|x, s; θs) if confident,

N (s) otherwise,

where θs and Pr( · |x, s; θs) are the model parameters of
C(s) ∪ N (s) and the posterior categorical distribution for
an image x, respectively. The top-down classification stops
at s if the prediction is a known leaf class or the classifier
is not confident with the prediction (i.e., the predicted class
is in N (s)). We measure the prediction confidence using
the KL divergence with respect to the uniform distribution:
intuitively, a confidence-calibrated classifier generates near-
uniform posterior probability vector if the classifier is not
confident about its prediction. Hence, we interpret that the
prediction is confident at a super class s if

DKL(U(·|s) ‖ Pr(·|x, s; θs)) ≥ λs,

where λs is a threshold, DKL denotes the KL divergence,
and U(·|s) is the uniform distribution when the classifica-
tion is made under a super class s. To train such confidence-
calibrated classifiers, we leverage classes disjoint from the
class s. Let O(s) be such a set of all known classes except
for s and its descendents. Then, the objective function of
our top-down classification model at a super class s is

min
θ

EPr(x,y|s) [− logPr(y|x, s; θs)]

+ EPr(x,y|O(s)) [DKL (U(·|s) ‖ Pr(·|x, s; θs))] , (1)

where Pr(x, y|O(s)) denotes the data distribution ofO(s).
However, under the above top-down scheme, the classi-

fication error might aggregate as the hierarchy goes deeper.
For example, if one of the classifier has poor performance,
then the overall classification performance of all descen-
dent classes should be low. In addition, the taxonomy is
not necessarily a tree but a directed-acyclic graph (DAG),
i.e., a class could belong to multiple parents, which could
lead to incorrect classification.3 In the next section, we pro-
pose flatten approaches, which overcome the error aggrega-
tion issue. Nevertheless, the top-down method can be used
for extracting good visual features for boosting the perfor-
mance of the flatten method, as we show in Section 4.

3 For example, if there are multiple paths to a class in a taxonomy, then
the class may belong to (i.e., be a descendant of) multiple children at some
super class s, which may lead to low KL divergence from the uniform
distribution and the image could be incorrectly classified asN (s).



3.3. Flatten method
We now propose to enumerate all probability of known

leaf and novel classes in a single probability vector, i.e., we
flatten the hierarchy, as described on the bottom of Figure 2.
The key idea is that a probability of super class s can be rep-
resented as Pr(s|x) =

∑
y′∈C(s) Pr(y

′|x) + Pr(N (s)|x),
and

∑
l′∈L(T ) Pr(l

′|x) +
∑
s′∈T \L(T ) Pr(N (s′)|x) = 1,

where l′ and s′ are summed over all known leaf classes and
super classes, respectively. Note that N (s) is considered as
a single novel class under the super class s, as discussed in
Section 3.1. Thus, as described in Figure 2, one can vir-
tually add an extra child for each super class to denote all
novel classes under it. Let (x, y) ∼ Pr(x, y) be a pair of
an image and its most fine-grained label sampled from data
distribution. Then, the classification rule is

ŷ = argmax
y′

Pr(y′|x; θ),

where y′ is either a known leaf or novel class. Here, a prob-
lem is that we have no training data from novel classes. To
address this, we propose two approaches to model the score
(i.e., posterior probability) of novel classes.
Data relabeling. A naive strategy is to relabel some train-
ing samples to its ancestors in hierarchy. Then, the images
relabeled to a super class are considered as novel class im-
ages under the super class. This can be viewed as a su-
pervised learning with both fine-grained and coarse-grained
classes where they are considered to be disjoint, and one
can optimize an objective function of a simple cross entropy
function over all known leaf classes and novel classes:

min
θ

EPr(x,y) [− logPr(y|x; θT )] . (2)

In our experiments, an image is randomly relabeled recur-
sively in a bottom-up manner with a probability of r, where
0 < r < 1 is termed a relabeling rate. An example of rela-
beling is illustrated in Figure 3 (b).
Leave-one-out strategy. A more sophisticated way to
model novel classes is to temporarily remove a portion of
taxonomy during training: specifically, for a training label
y, we recursively remove one of its ancestor a ∈ A(y)
from the taxonomy T in a hierarchical manner. To repre-
sent a deficient taxonomy, we define T \a as a taxonomy
where a and its descendants are removed from the origi-
nal taxonomy T . At each stage of removal, a training la-
bel y becomes a novel class of the parent of a in T \a, i.e.,
N (P(a)). Figure 3 (a, c–d) illustrates this idea with an ex-
ample: in Figure 3 (a), when y is “Persian cat,” the set of
its ancestor is A(y) ={ “Persian cat,” “cat,” “animal” }.
In Figure 3 (c), images under a =“Persian cat” belong to
N (P(a)) =“novel cat” in T \a. Similarly, in Figure 3 (d),
images under a =“cat” belong to N (P(a)) =“novel ani-
mal” in T \a. As we leave a class out to learn a novel class,

animal

cat dog

Persian cat Siamese cat Pomeranian Welsh corgi
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animal(b)

cat dog

Persian cat Siamese cat Pomeranian Welsh corgi

animal

cat dog
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(c)
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novel animal dog
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Figure 3: Illustration of strategies to train novel class scores
in flatten methods. (a) shows the training images in the tax-
onomy. (b) shows relabeling strategy. Some training im-
ages are relabeled to super classes in a bottom-up manner.
(c–d) shows leave-one-out (LOO) strategy. To learn a novel
class score under a super class, one of its child is temporar-
ily removed such that its descendant known leaf classes are
treated as novel during training.
we call this leave-one-out (LOO) method. With some nota-
tion abuse for simplicity, the objective function of the LOO
model is then

min
θ

EPr(x,y)
[
− logPr(y|x; θL(T ))

+
∑

a∈A(y)

− logPr(N (P(a))|x; θT \a)
]
, (3)



where the first term is the standard cross entropy loss with
the known leaf classes, and the second term is the sum-
mation of losses with N (P(a)) and the leaves under T \a.
We provide further implementation details in Supplemen-
tary material.

As we mentioned earlier, the flatten methods can be com-
bined with the top-down one in sequence: the top-down
method first extracts multiple softmax probability vectors
from visual features, and then the concatenation of all prob-
abilities can be used as an input of the LOO model. We
name the combined method TD+LOO for conciseness.

4. Evaluation: Hierarchical novelty detection
We present the hierarchical novelty detection perfor-

mance of our proposed methods combined with CNNs on
ImageNet [7], Animals with Attributes 2 (AwA2) [18, 33],
and Caltech-UCSD Birds (CUB) [32], where they represent
visual object datasets with deep, coarse-grained, and fine-
grained taxonomy, respectively. Experimental results on
CIFAR-100 [16] can be found in Supplementary material,
where the overall trends of results are similar to others.

4.1. Evaluation setups
Compared algorithms. As a baseline, we modify the dual
accuracy reward trade-off search (DARTS) algorithm [8] for
our purpose. Note that DARTS gives some rewards to la-
bels in hierarchy, where fine-grained prediction gets higher
reward. Under this algorithm, for a novel class, its closest
super class in the taxonomy would give the maximum re-
ward. At test time, the modified DARTS generates expected
rewards for all known leaf and novel classes, so prediction
can be done in the same way as the flatten methods.

As our proposed methods, Relabel, LOO, and TD+LOO
are compared. For a fair comparison in terms of the model
capacity, deep Relabel and LOO models are also experi-
mented, where a deep model is a stack of fully connected
layers followed by rectified linear units (ReLU). We do not
report the performance of the pure top-down method since
1) one can combine it with LOO methods for better perfor-
mance as mentioned in Section 3.2, and 2) fair comparisons
between the pure top-down method and others are not easy:
intuitively, the confidence threshold λs in Section 3.2 can
be tuned. For example, the novel class score bias in the
flatten method would improve the novel class detection ac-
curacy, but large λs does not guarantee the best novel class
performance in the top-down method because hierarchical
classification results would tend to stop at the root class.
Datasets. ImageNet [7] consists of of 22k object classes
where the taxonomy of the classes is built with the
hypernym-hyponym relationships in WordNet [22]. We
take 1k mutually exclusive classes in ILSVRC 2012 as
known leaf classes, which are a subset of the ImageNet.4

4 Except “teddy bear,” all classes in ILSVRC 2012 are in ImageNet.

Based on the hypernym-hyponym relationships in WordNet,
we initially obtained 860 super classes of 1k known leaf
classes, and then merged indistinguishable super classes.
Specifically, if a super class has only one child or shares
exactly the same descendant leaf classes, it is merged with
classes connected to the class. After merging, the resul-
tant taxonomy is a DAG and has 396 super classes where
all super classes have at least two children and have differ-
ent set of descendant leaf classes. On the other hand, the
rest of 21k classes can be used as novel classes for testing.
Among them, we discarded super classes, classes under 1k
known leaf classes, and classes with less than 50 images for
reliable performance measure. After filtering classes, we
obtain about 16k novel classes. ILSVRC 2012 has about
1.3M training images and another 50k images in 1k known
leaf classes. We put the 50k images aside from training
and used for test, and we sampled another 50k images from
1.3M training images for validation. For novel classes, we
sampled 50 images from each class. In summary, we have
about 1.2M training images, 50k validation images, and 50k
test images from known leaf classes, and 800k test images
from novel classes.

AwA2 [18, 33] consists of 40 known leaf classes and 10
novel classes with 37k images, and CUB [32] consists of
150 known leaf classes and 50 novel classes with 12k im-
ages. Similar to ImageNet, the taxonomy of each dataset
is built based on the hypernym-hyponym relationships in
WordNet. The resultant taxonomy is a tree and has 21 and
43 super classes for AwA2 and CUB, respectively.
Training. We take ResNet-101 [12] as a visual feature ex-
tractor (i.e., the penultimate layer of the CNN before the
classification layer) for all compared methods. The CNNs
are pretrained with ILSVRC 2012 1k classes, where they
do not contain any novel classes of datasets experimented.
Then, the final classification layer of the CNNs is replaced
with our proposed models. Note that CNNs and our pro-
posed models can be trained in an end-to-end manner, but
we take and freeze the pretrained parameters in all layers
except for the final layer for the sake of faster training.

For ImageNet, we use mini-batch SGD with 5k center-
cropped data per batch. As a regularization, L2 norm weight
decay with parameter 10−2 is applied. The initial learning
rate is 10−2 and it decays at most two times when loss im-
provement is less than 2 % compared to the last epoch.

For AwA2 and CUB, the experiments are done in the
same environment with the above except that the models are
trained with the full-batch GD and Adam optimizer [15].
Metrics. We first consider the top-1 accuracy by counting
the number of predicted labels exactly matching the ground
truth. Note that we have two types of classes in test datasets,
i.e., known and novel classes. Performances on two types of
classes are in trade-off relation, i.e., if one tunes model pa-
rameters for favoring novel classes, the accuracy of known
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Figure 4: Qualitative results of hierarchical novelty detection on ImageNet. “GT” is the closest known ancestor (super class)
of the novel class, which is the expected prediction, “DARTS” is the baseline method proposed in [8] where we adapt their
method to our task, and the others are our proposed methods. “ε” stands for the distance between the prediction and GT, and
“A” indicates whether the prediction is an ancestor of GT. Dashed edges represent multi-hop connection, where the number
indicates the number of edges between classes. If the prediction is on a super class (marked with * and rounded), then the
test image is classified as a novel class whose closest class in the taxonomy is the super class.

classes would be decreased. Specifically, by adding some
positive bias to the novel class scores (e.g., logits in the
softmax), one can decrease known class accuracy while in-
creasing novel class accuracy, or vice versa. Hence, for a
fair comparison, we measure the novel class accuracy with
respect to some fixed known class accuracy, e.g., 50 %. As
a more informative evaluation metric, we also measure the
area under known-novel class accuracy curve (AUC). Vary-
ing the novel class score bias, a curve of known class ac-
curacy versus novel class accuracy can be drawn, which de-
picts the relationship between the known class accuracy and
the novel class accuracy. The AUC is the area under this
curve, which is independent of the novel class score bias.

4.2. Experimental results
We first compare the hierarchical novelty detection re-

sults of the baseline method and our proposed methods
qualitatively with test images on ImageNet in Figure 4.
We remark that our proposed methods can provide infor-
mative prediction results by utilizing the taxonomy of the
dataset. In Figure 4 (a), LOO and TD+LOO find the ground
truth label (the most fine-grained label in taxonomy), while
DARTS classifies it as “beagle,” which is in fact visually
similar to “American foxhound.” In Figure 4 (b), none of
the method finds the ground truth, but the prediction of

Table 1: Hierarchical novelty detection results on Ima-
geNet, AwA2, and CUB. For a fair comparison, 50 % of
known class accuracy is guaranteed by adding a bias to all
novel class scores (logits). The AUC is obtained by vary-
ing the bias. Known-novel class accuracy curve is shown in
Figure 5. Values in bold indicate the best performance.

Method
ImageNet AwA2 CUB

Novel AUC Novel AUC Novel AUC

DARTS [8] 10.89 8.83 36.75 35.14 40.42 30.07
Relabel 15.29 11.51 45.71 40.28 38.23 28.75

LOO 15.72 12.00 50.00 43.63 40.78 31.92
TD+LOO 18.78 13.98 53.57 46.77 43.29 33.16

TD+LOO is the most informative, as it is the closest label
in the hierarchy. In Figure 4 (c–d), only the prediction of
TD+LOO is correct, but the rest of the methods also give a
reasonable amount of information. More qualitative results
can be found in Supplementary material.

Table 1 shows the hierarchical novelty detection perfor-
mance on ImageNet, AwA2, and CUB. One can note that
the proposed methods significantly outperform the baseline
method in most cases, except the case of Relabel on CUB,
because validation could not find the best relabeling rate
for test. Also, we remark that LOO outperforms Relabel.
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Figure 5: Known-novel class accuracy curves obtained by varying the novel class score bias on ImageNet, AwA2, and CUB.
In most regions, our proposed methods outperform the baseline method.

The main difference of two methods is that Relabel gives a
penalty to the original label if it is relabeled during training,
which turns out to be harmful for the performance. Finally,
TD+LOO exhibits the best performance, which implies that
the multiple softmax probability vectors extracted from the
top-down method is more useful than the vanilla visual fea-
tures extracted from the state-of-the-art CNNs in the hierar-
chical novelty detection tasks. Figure 5 shows the known-
novel class accuracy curves by varying the bias added to
the novel class scores. Our proposed methods have higher
novel class accuracy than the baseline in most regions.

5. Evaluation: Generalized zero-shot learning

We present the GZSL performance of the combination
of the hierarchical embedding obtained by the top-down
method and other semantic embeddings on Animals with
Attributes (AwA1 and AwA2)5 [18, 33] and Caltech-UCSD
Birds (CUB) [32].

5.1. Evaluation setups
Hierarchical embeddings for GZSL. GZSL requires an
output semantic embedding built with side information,
e.g., attributes labeled by human, or word embedding
trained with a large text corpus. In addition to those two
commonly used semantic embeddings, Akata et al. [1] pro-
posed to use hierarchical relationships of all classes, includ-
ing classes unseen during training. Specifically, they mea-
sured the shortest path distance between classes in the tax-
onomy built with both known and novel classes, and take
the vector of distance values as output embedding. We refer
to this embedding as Path.

Motivated by the effectiveness of the features extracted
from the top-down method shown in Section 4.2, we set
the enumeration of the ideal multiple softmax probability
vectors as the semantic embedding: let C(s)[i] be the i-th

5AwA1 is similar to AwA2, but images in AwA1 are no longer avail-
able due to the public copyright license issue. We used precomputed
CNN features for AwA1, which is available at http://datasets.d2.
mpi-inf.mpg.de/xian/xlsa17.zip.

child of a super class s. Then, for a label y and a super
class s, the i-th element of an ideal output probability vector
t(y,s) ∈ [0, 1]|C(s)| is

t(y,s)[i] =


1 if y belongs to C(s)[i]
0 if y belongs to C(s)[j] where i 6= j

1
|C(s)| if y is novel or does not belong to s

where |C(s)| is the number of known child classes under
s. The final visual embedding is the concatenation of them
with respect to the super classes, i.e., the ground truth se-
mantic vector of a class y is ty = [. . . , t(y,s), . . . ], and we
call this embedding TD. See Supplementary material for an
example of the ideal output probability vector ty .

Since classes who share the same closest super class have
exactly the same desired output probability vector, we made
random guess for fine-grained classification in the experi-
ment only with the hierarchical embedding.
Datasets. AwA1 and AwA2 [18, 33] consists of 40
seen classes and 10 unseen classes with 37k images, and
CUB [32] consists of 150 seen classes and 50 unseen classes
with 12k images,6 where the taxonomy can be built in the
same way with Section 4.
Training. We note that the performance of combined mod-
els is reported in [1], but the numbers are outdated, due
to the old CNNs and ZSL models. Thus, instead of mak-
ing direct comparison with theirs, we construct the envi-
ronment following the state-of-the-art setting and compared
the performance gain obtained by ensembling different hier-
archical embedding models to other semantic embeddings.
We take ResNet-101 as a pretrained visual feature extractor,
and we apply deep embedding model proposed in [35] for
training attribute embedding and word embedding models,
where it learns to map semantic embeddings to the visual
feature embedding with two fully connected layers with
ReLU between them. As a combination strategy, we cal-
culate prediction scores of each model and then used their

6 In GZSL, we have semantic information of unseen classes. In this
sense, although unseen classes are not used for training, they are known as
such a class-specific semantic information is required.

http://datasets.d2.mpi-inf.mpg.de/xian/xlsa17.zip
http://datasets.d2.mpi-inf.mpg.de/xian/xlsa17.zip
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Figure 6: Seen-unseen class accuracy curves of the best combined models obtained by varying the unseen class score bias on
AwA1, AwA2, and CUB. “Path” is the hierarchical embedding proposed in [1], and “TD” is the embedding of the multiple
softmax probability vector obtained from the proposed top-down method. In most regions, TD outperforms Path.

Table 2: ZSL and GZSL performance of semantic embed-
ding models and their combinations on AwA1, AwA2, and
CUB. “Att” stands for continuous attributes labeled by hu-
man, “Word” stands for word embedding trained with the
GloVe objective [24], and “Hier” stands for the hierarchical
embedding, where “Path” is proposed in [1], and “TD” is
output of the proposed top-down method. “Unseen” is the
accuracy when only unseen classes are tested, and “AUC”
is the area under the seen-unseen curve where the unseen
class score bias is varied for computation. The curve used
to obtain AUC is shown in Figure 6. Values in bold indicate
the best performance among the combined models.

Embedding AwA1 AwA2 CUB
Att Word Hier Unseen AUC Unseen AUC Unseen AUC

X 65.29 50.02 63.87 51.27 50.05 23.60
X 51.87 39.67 54.77 42.21 27.28 11.47

X X 67.80 52.84 65.76 53.18 49.83 24.13
Path 42.57 30.58 44.34 33.44 24.22 8.38

X Path 67.09 51.45 66.58 53.50 50.25 23.70
X Path 52.89 40.66 55.28 42.86 27.72 11.65

X X Path 68.04 53.21 67.28 54.31 50.87 24.20
TD 33.86 25.56 31.84 24.97 13.09 7.20

X TD 66.13 54.66 66.86 57.49 50.17 30.31
X TD 56.14 46.28 59.67 49.39 29.05 16.73

X X TD 69.23 57.67 68.80 59.24 50.17 30.31

weighted sum for final classification, where the weights are
cross-validated. See [1] for more details about the combi-
nation strategy as well as the semantic embeddings.
Metrics. The ZSL performance is measured by testing un-
seen classes only, and the GZSL performance is measured
by the area under seen-unseen curve (AUC) following the
idea in [4]. We measure the class-wise accuracy rather than
the sample-wise accuracy to avoid the effect of imbalanced
test dataset, as suggested in [33].

5.2. Experimental results
Table 2 shows the performance of the attribute, word,

and path embedding model, the hierarchical embedding

model derived from the proposed top-down method, and
their combinations on AwA1, AwA2, and CUB. In Table 2,
the standalone performance of top-down method is not bet-
ter than the path embedding, as it does not distinguish un-
seen classes sharing the same closest super class. In the
same reason, the improvement on ZSL performance with
the combined models is fairly small. However, in the GZSL
task, the top-down hierarchical embedding shows signifi-
cantly better performance in the combined models, which
means that the top-down embedding is better when distin-
guishing seen classes and unseen classes together. Com-
pared to the best single semantic embedding model (with
attributes), the combination with the top-down embedding
leads to absolute improvement of AUC by 7.65%, 7.97%,
and 6.71% on AwA1, AwA2 and CUB, respectively, which
is significantly better than that of the path embedding.

6. Conclusion
We propose a new hierarchical novelty detection frame-

work, which performs object classification and hierarchical
novelty detection by predicting the closest super class in a
taxonomy. We propose several methods for the hierarchi-
cal novelty detection task and show that our models achieve
significantly better performance over prior work. In addi-
tion, the hierarchical embedding learned with our model
can be combined with other semantic embeddings such as
attributes and words to improve generalized zero-shot learn-
ing performance. As future work, augmenting textual infor-
mation about labels for hierarchical novelty detection would
be an interesting extension of this work.
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