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Abstract

Deep neural networks can model images with rich la-

tent representations, but they cannot naturally conceptual-

ize structures of object categories in a human-perceptible

way. This paper addresses the problem of learning object

structures in an image modeling process without supervi-

sion. We propose an autoencoding formulation to discover

landmarks as explicit structural representations. The en-

coding module outputs landmark coordinates, whose va-

lidity is ensured by constraints that reflect the necessary

properties for landmarks. The decoding module takes the

landmarks as a part of the learnable input representations

in an end-to-end differentiable framework. Our discovered

landmarks are semantically meaningful and more predic-

tive of manually annotated landmarks than those discovered

by previous methods. The coordinates of our landmarks

are also complementary features to pretrained deep-neural-

network representations in recognizing visual attributes. In

addition, the proposed method naturally creates an unsu-

pervised, perceptible interface to manipulate object shapes

and decode images with controllable structures.

1. Introduction

Computer vision seeks to understand object structures

that reflect the physical states of objects and show invari-

ance to individual appearance changes. Such intrinsic struc-

tures can serve as intermediate representations for high-

level visual understanding. However, manual annotations

or designs of object structures (e.g., skeleton, semantic

parts) are costly and barely available for most object cate-

gories, making the automatic representation learning of ob-

ject structure an attractive solution to this challenge.

Modern neural networks can learn latent representations

to effectively solve various vision problems, including im-

age classification [26, 53, 56, 20], segmentation [32, 40,

21], object detection [17, 80, 49], human pose estima-

tion [39], 3D reconstruction [13, 67, 14], and image gen-

eration [25, 18, 43]. Several existing studies [17, 76, 1]

observe that these representations naturally encode massive

templates of particular visual patterns. However, little evi-

dence suggests that deep neural networks can naturally con-

ceptualize the intrinsic structures of an object category com-

pactly and perceptibly.

We aim at learning the physical parameters of concep-

tualized object structures without supervision. As a typical

representation of intrinsic structures, landmarks represent

the spatial configuration of stable local semantics across dif-

ferent object instances of the same category. Thewlis et al.

[59] proposed an unsupervised method to locate landmarks

at the places where a convolutional neural network can de-

tect stable visual patterns with high spatial equivariance to

image transformations. However, this method did not ex-

plicitly encourage the landmarks to appear at critical loca-

tions for image modeling.

This paper addresses the problem of discovering land-

marks in a generic image modeling process. In particular,

we take landmark discovery as an intermediate step for im-

age autoencoding. To leverage the training signals from

the landmark-based image decoder, gradients need to go

through the landmark coordinates, which makes Thewlis

et al. [59]’s non-differentiable formulation infeasible. With

a different way to calculate landmark coordinates, the im-

age decoding module can make the landmark configuration

informative regarding image reconstruction. We also in-

troduce additional regularization terms to enforce the de-

sirable properties of the detected landmarks and to prevent

the landmark coordinates from encoding irrelevant or re-

dundant latent information.

Our contributions in this paper are as follows.

1. We develop a differentiable autoencoder framework

for object landmark discovery, which allows the image

decoder to propagate training signals back to the land-

mark detection module. We introduce several soft con-

straints to reflect the properties of landmarks, forcing

the discovered representations to be valid landmarks.

2. The proposed method discovers visually meaningful

landmarks without supervision for a variety of ob-

jects. It outperforms the state-of-the-art method re-

garding the accuracy of predicting manually-annotated

landmarks using discovered landmarks, and it per-

forms comparably to fully supervised landmark detec-

tors trained with a significant amount of labeled data.

3. The discovered landmarks show strong discriminative

performance in recognizing visual attributes.

4. Our landmark-based image decoder is useful for con-

trollable image decoding, such as object shape manip-

ulation and structure-conditioned image generation.



2. Related work

Discriminative part learning. Parts are commonly used

object structures in computer vision. The deformable part-

based model [15] learns object part configurations to op-

timize the object detection accuracy, where similar ideas

are rooted in earlier constellation approaches [16, 66, 6]. A

recent method [72] based on the deep neural network per-

forms end-to-end learning of deformable mixture of parts

for pose estimation. The recurrent architecture [19] and spa-

tial transformer network [23] are also used to discover and

refine object parts for fine-grained image classification [27].

In addition, discriminative mid-level patches can be also

discovered without explicit supervision [54]. Object-part

discovery based on subspace analysis and clustering tech-

niques is also shown to improve neural-network-based im-

age recognition [52]. Unlike the approaches specific to dis-

criminative tasks, our work focuses on learning landmarks

for generic image modeling.

Learning structural representations. To capture the in-

trinsic structures of objects, existing studies [44, 45, 37] dis-

entangle visual content into multiple factors of variations,

like the camera viewpoint, motion, and identity. The physi-

cal parameters of these factors are, however, still embedded

in non-perceptible latent representations. Methods based

on multi-task learning [78, 21, 65, 81] can take conceptual-

ized structures (e.g., landmarks, masks, depth) as additional

outputs. These structures in this setting are designed by hu-

mans and require supervision to learn.

Learning explicit structures for image correspondence.

Object structures create correspondence among object in-

stances. Colocalization [57, 9] realizes the coarsest level

of object correspondence. In a finer granularity, Anchor-

Net [41] learns object parts and their correspondence across

different objects and categories. WarpNet [24] corresponds

images in the same class by estimating the parameter of

a thin plate spline (TPS) transformation [4], and it can

roughly reconstruct 3D point cloud using a single-view im-

age. The 3D interpreter network [67] utilizes 2D landmark

annotations to discover 3D skeletons as the explicit struc-

tures of objects. Our discovered landmarks are denser than

object parts and sparser than 3D points. These landmark

representations are also more sensitive to precise locations

and obtained without supervision.

Landmark discovery with equivariance. Object struc-

tures like landmarks should be equivariant to image trans-

formation, including object and camera motions. Using this

property in 2D image domain, Rocco et al. [50] proposed to

discover TPS control points to match pairs of object images

densely. Thewlis et al. [58] tried to densely map different

objects to a canonical coordinate that reflects object struc-

tures. Instead of learning dense correspondence, Thewlis

et al. [59] took the same equivariance property as the guid-

ance to train deep neural networks for object landmark dis-

covery without manual supervision. A similar idea was

formulated differently using hand-crafted features in early

work [30]. In comparison, our method not only takes the

equivariance as a constraint to ensure the validity of the

landmarks, but also use a differentiable formulation to in-

corporate the landmark coordinates into a generic image

modeling process. Moreover, our discovered landmarks

are more predictive of manually annotated landmarks than

those obtained by Thewlis et al. [59], and our method works

on a broader range of object categories.

Image modeling with landmarks. Many unsupervised

deep learning techniques exist to model visual content,

including stacked autoencoders (SAE) [2, 36], varia-

tional autoencoders [25], generative adversarial networks

(GAN) [18, 43], and auto-regressive networks [63] (e.g.,

PixelCNN [62]). The GAN- and PixelCNN-based image

generators conditioned on given object landmarks are pro-

posed in [46, 47]. In contrast, our method uses the SAE

framework to automatically discover landmarks that are in-

formative for unsupervised image modeling.

Landmark detection. A vast amount of supervised land-

mark detection methods exist in the literature. For hu-

man faces, there are active appearance models [10, 38, 11],

template-based methods [42, 83], regression-based meth-

ods [61, 12, 7, 48], and more recent methods based on deep

neural networks [55, 77, 81, 82, 75, 70, 68, 33, 71]. Land-

mark detection methods are also available for human bod-

ies [73, 60, 39], and birds [75]. We use our discovered land-

marks to predict manually annotated landmarks and com-

pare our method with some recent supervised models.

3. Autoencoding-based landmark discovery

We aim at automatically discovering landmarks as an

explicit representation of visual content. We propose an

autoencoder that encodes landmark coordinates as (a part

of) the encoder outputs (Section 3.1). Without supervision

from hand-crafted labels, we introduce several constraints

to encourage the discovered landmark coordinates to re-

flect the visual concept that agrees with human perception

(Section 3.2). The proposed constraints prevent landmark-

based representations from degenerating to non-perceptible

latent representations. Another pathway of the encoder ex-

tracts the local latent descriptor for each discovered land-

mark (Section 3.3). We use both the landmarks and the la-

tent descriptors to reconstruct the input image (Section 3.4).

This section presents the fully differentiable neural network

architecture (Figure 1) and training objectives (Section 3.5)

for landmark discovery and unsupervised image modeling.

3.1. Architecture of landmark detector

We formulate landmark localization as the problem of

detecting particular keypoints in the image [39]. Specifi-

cally, each landmark has a corresponding detector, which

convolutionally outputs a detection score map with the de-
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Figure 1: Neural network architectures of our autoencoding framework for unsupervised landmark discovery. See text for the details.

tected landmark located at the maximum. In this frame-

work, we use a deep neural network to transform an im-

age I to a (K + 1)-channel detection confidence map D ∈
[0, 1]W×H×(K+1). This map detects K landmarks, and the

(K + 1)-th channel represents background. D’s resolution

W ×H can be either equal to or less than that of I, but they

should have the same aspect ratio.

Inspired by the success of the stacked hourglass network

in human pose estimation [39], we propose a light-weighted

hourglass-style network to get the raw detection score map

R = hourglassℓ(I; θℓ) ∈ R
W×H×(K+1), (1)

where θℓ denotes the parameters. The hourglass-style ar-

chitecture (Appendix G.2) allows detectors to focus on the

critical local patterns at landmark locations while utilizing

higher-level context. Then, we transform the unbounded

raw scores to probabilities and encourage each channel to

detect a different pattern. To this end, we normalize R

across the channels (including the background) using soft-

max and obtain the detection confidence map

Dk(u, v) =
exp(Rk(u, v))

∑K+1
k′=1 exp (Rk′(u, v))

, (2)

where the matrix Dk is the k-th channel of D, and the scalar

Dk(u, v) is the value of Dk at the pixel (u, v). Later, we

also use the vector D(u, v) ∈ [0, 1]K+1 to denote the multi-

channel values of D at (u, v). The same notation conven-

tion applies to other tensors of three axes.

Taking Dk as a weighting map, we use the weighted

mean coordinate as the location of the k-th landmark, i.e.,

(xk, yk) =
1

ζk

H
∑

v=1

W
∑

u=1

(u, v) ·Dk(u, v), (3)

where ζk =
∑H

v=1

∑W

u=1 Dk(u, v) is the spatial normal-

ization factor. This formulation enables back-propagating

the gradient from the downstream neural network through

the landmark coordinates unless Dk’s mass is totally con-

centrated in a single pixel or totally uniformly distributed,

which rarely happens in practice. As a shorthand notation,

we write the landmarks and landmark detector as

ℓ = [x1, y1, . . . , xK , yK ]⊤ = landmark(I; θℓ). (4)

The left half of the blue pathway in Figure 1 illustrates the

landmark detector.

3.2. Visual concept of landmarks

The elements in ℓ are supposed to be the discovered land-

mark coordinates, but so far, there is no guarantee to prevent

them from being arbitrary latent representations. Therefore,

we propose the following soft constraints as regularizers to

enforce the desirable properties for landmarks.

Concentration constraint As a detection confidence map

for a single location, the mass of Dk need to be concen-

trated in a local region. Taking Dk/ζk (spatially normalized

as in (3)) as the density of a bivariate distribution on the im-

age coordinate, we compute its variance σ2
det,u and σ2

det,v

along the two axes. We define the concentration constraint

loss as follows to encourage both variances to be small:

Lconc = 2πe
(

σ2
det,u + σ2

det,v

)2
. (5)

This equation makes Lconc the exponential of the entropy

of the isotropic Gaussian distribution N ((xk, yk), σ
2
detI),

where σ2
det = (σ2

det,u + σ2
det,v)/2, and I is the identity

matrix. This Gaussian distribution is an approximation of

Dk/ζk, and lower entropy means a more peaked distribu-

tion. Note that, formally, this approximation is

Dk(u, v) = (1/WH)N
(

(u, v); (xk, yk), σ
2
detI
)

. (6)

Separation constraint Ideally, the autoencoder training

objective can automatically encourage the K landmarks to

be distributed at different local regions so that the whole

image can be reconstructed. However, the initial random-

ness can make the landmarks, defined as the mean coordi-

nates weighted by D as in (3), all around the image center

in the beginning of the training. This can lead to local op-

tima from which the gradient descent may not escape (see

Appendix F.2). To circumvent this difficulty, we introduce



an explicit loss to spatially separate the landmarks:

Lsep =

1,...,K
∑

k 6=k′

exp

(

−
‖(xk′ , yk′)− (xk, yk)‖

2
2

2σ2
sep

)

. (7)

Equivariance constraint A landmark should locate a sta-

ble local pattern (with definite semantics). This requires

landmarks to show equivariance to image transformations.

More specifically, a landmark should move according to the

transformation (e.g., camera and object motion) applied to

the image if the corresponding visual semantics still exist

in the transformed image. Let g(·, ·) be a coordinate trans-

formation that map image I to I
′(u, v) = I(g(u, v)), and

ℓ
′ = [x′

1, y
′
1, . . . , x

′
K , y′K ]⊤ = landmark(I′). We ideally

have g(x′
k, y

′
k) = (xk, yk), inducing the soft constraint

Leqv =
K
∑

k=1

‖g(x′
k, y

′
k)− (xk, yk)‖

2
2 , (8)

This loss function is well-defined when g is known. Inspired

by Thewlis et al. [59], we simulate g by a thin plate spline

(TPS) [4] with random parameters. We use random trans-

lation, rotation, and scaling to determine the global affine

component of the TPS; and, we spatially perturb a set of

control points to determine the local TPS component. Be-

sides the conventional way of selecting TPS control points

at a predefined uniform grid (as used in [59]), we also take

the landmarks detected by the current model as the control

points to improve simulated transformation’s focus on key

image patterns. The two sets of control points are alterna-

tively used in each optimization iteration (see Appendix F.3

for details). Moreover, when training sample appear in the

form of video, we can also take the dense motion flow as g
and the actual next frame as I′.

Cross-object correspondence Our model does not explic-

itly ensure the semantic correspondence among the land-

marks discovered on different object instances. The cross-

object semantic stability of the landmarks mainly relies on

the fact that visual patterns activating the same convolu-

tional filter are likely to share semantic similarities.

3.3. Local latent descriptors

For simple images, like in MNIST [29] (see results for

MNIST in Appendix B), multiple landmarks can be enough

to describe the object shapes. For most natural images,

however, landmarks are insufficient to represent all visual

content, so extra latent representations are needed to encode

complementary information. Though necessary, the latent

representations should not encode too much holistic infor-

mation that can overwhelm the image structures reflected by

the landmarks. Otherwise, the autoencoder would not pro-

vide enough driving force to localize landmarks at mean-

ingful locations. To achieve this trade-off, we attach a low-

dimensional local descriptor to each landmark.

An hourglass-style neural network (see Appendix G.2) is

introduced to obtain a feature map F, which has the same

size as the detection confidence map D:

F = hourglassf (I; θf ) ∈ R
W×H×S . (9)

Note that F is in a feature space shared among all landmarks

and has S channels.

For each landmark, we use an average pooling weighted

by a soft mask centered at the landmark to extract the local

feature in the shared space. In particular, we take Dk, which

is the Gaussian approximation of the detection confidence

map defined in (6), as the soft mask. Then, a learnable lin-

ear operator is introduced for each landmarks to map the

feature representation into a lower-dimensional individual

space. Thus, the latent descriptor for the k-th landmark is

fk = Wk

H
∑

v=1

W
∑

u=1

(

Dk(u, v) · F(u, v)
)

∈ R
C , (10)

where C < S. The landmark-specific linear operator en-

ables each landmark descriptor to encode a particular pat-

tern in limited bits. We can also use (10) to extract a

low-dimensional background descriptor. Since it is un-

reasonable to approximate the background confidence map

with a Gaussian distribution, we exactly set DK+1 =
DK+1/ζK+1. Note that fk is differentiable regarding both

the feature map and the detection confidence map.

Putting all latent descriptors together, we have f =
vec
(

[f1, f2, . . . , fK+1] ∈ R
C×(K+1)

)

. The left half of the

red pathway in Figure 1 illustrates the neural network ar-

chitecture to extract the landmark descriptors.

3.4. Landmarkbased decoder

We approximately invert the landmark coordinates to the

detection confidence map D̃ ∈ R
W×H×(K+1). Concretely,

we use the probability density of an isotropic Gaussian dis-

tribution centered at each landmark to get raw score maps

R̃k(u, v) =N
(

(u, v); (xk, yk), σ
2
decI

)

, R̃K+1 = 1. (11)

and the background channel is set to 1. R̃ is then normal-

ized across channels to obtain the reconstructed detection

confidence map

D̃(u, v) = R̃k(u, v)/

K+1
∑

k=1

R̃k(u, v). (12)

Figure 1 (right half of the blue pathway) illustrates this.

For each landmark (including the background) descrip-

tor fk, we transform it into a shared feature space by the

landmark-specific operator W̃k and an activation function

(e.g., LeakyReLU [34]). Using D̃ as the soft switches for

global unpooling, we recover the feature map

F̃(u, v) =

K+1
∑

k=1

D̃k(u, v) · τ(W̃kfk) ∈ R
W×H×S , (13)

where τ(·) is the non-linear activation function. This is il-

lustrated by the right half of the red pathway in Figure 1.

Though alternative neural network architectures are

available (e.g., in [46, 47]) for landmark-conditioned im-



age decoding, our proposed architecture enables back-

propagation through the landmark coordinates. The Gaus-

sian variance σ2
dec determines how much the neighboring

pixels can contribute to the gradients for the landmark

coordinates and how sharp the descriptor is localized in

the recovered feature map. While it is important to in-

clude more pixels for back-propagation in the early stage

of training, sharpness becomes more important as train-

ing goes on. To balance the two needs, we obtain mul-

tiple versions of D̃, F̃ under different values of σdec, say,

(D̃1, F̃1), (D̃2, F̃2), . . . , (D̃M , F̃M ).

Let J· · ·K be the channel-wise concatenation. We use an-

other hourglass-style network to reconstruct the image

Ĩ = hourglassd(JD̃
1, F̃1, . . . , D̃M , F̃M K; θd) (14)

The gray pathway in Figure 1 illustrates the image decoder.

3.5. Overall training objective

The image reconstruction loss Lrecon drives the training

of the entire autoencoder. We define Lrecon as ‖I − Ĩ‖2F ,

and I is normalized to [0, 1]. The full loss is LAE =

λreconLrecon + λconcLconc + λsepLsep + λeqvLeqv. (15)

4. Experiments

We evaluate our method on a variety of datasets, includ-

ing CelebA [31] and AFLW [35] for human faces, the cat

head dataset [79], a car dataset built from PASCAL 3D [69],

shoe images from UT Zappos50k [74], human pose images

from Human3.6M [22, 8], MNIST (Appendix B), and ani-

mal images from AwA [28] (Appendix D).

Section 4.1 describes the datasets and shows the qualita-

tive results of landmark discovery. In Section 4.2, we use

the discovered landmarks to predict human-annotated land-

marks, and we take the landmark detection accuracy as an

indicator of the quality of discovered landmark. Section 4.3

demonstrates that our discovered landmarks can serve as ef-

fective image representations to predict shape-related facial

attributes on CelebA. In Section 4.3, we show that our de-

coding module and the automatically discovered landmarks

can be used to manipulate the object shapes.

4.1. Landmark discovery on multiple datasets

We train and evaluate landmark discovery models on a

variety of objects. The detailed architectures of the neural

network modules (i.e., hourglassℓ|f |d) depend on the im-

age sizes on different datasets. Appendix G describes im-

plementation details, including data preprocessing, network

architectures, model parameters, and optimization methods.

CelebA Following [59], we use all facial images in the

CelebA training set excluding those also appearing in the

MAFL the test set1 (then 16,1962 images in total) to train

models for landmark discovery. We use the MAFL test-

ing set (1000 images) for all testing cases and reserve the

1The MAFL dataset [81] is a subset of CelebA.

Ours

Thewlis 

et al. 

Ours

Thewlis 

et al.
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Forehead 
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the left

Lower-lip 

landmark to 

the right

Mouth-corner 
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the forehead

Right-eyebrow 

landmark on 

the left side

Forehead 

landmark to 

the left

Figure 2: Discovering 10 landmarks on CelebA images. All fig-

ures for Thewlis et al. [59]’s come from their paper. The last row

shows unsuccessful cases from [59] with error descriptions below.

Figure 3: Discovering 10 landmarks on unaligned head-shoulder

images using our model trained on aligned facial images.

Figure 4: Discovering 30 landmarks on unaligned CelebA images

using our method.

MAFL training set (19,000 images) to train prediction mod-

els for manually-annotated landmarks. By default, we use

the cropped and aligned images provided in the dataset.

As shown in Figure 2, our method can automatically

discover facial landmarks at semantically meaningful and

stable locations, such as the forehead center, eyes, eye-

brows, nose, and mouth corners. Compared to Thewlis

et al. [59]’s method, which results in a few significant errors,

our method can locate landmarks more robustly against

pose variations and occlusions. Interestingly, our method

can work out-of-the-box on head-shoulder portraits with-

out training on exactly the same type of images (Figure 3).

Figure 4 shows that our method can also learn and detect a

larger number (e.g., 30) of high-quality landmarks on un-

aligned facial images. Appendix E.1 shows more results.

AFLW Face images in AFLW are cropped differently

from CelebA. The landmark discovery models (both ours

and Thewlis et al. [59]’s) are pretrained on CelebA and fine-

tuned on the AFLW training set (10,122 images) for adap-



Figure 5: Discovering landmarks on cat head images using our

method. Top row: 10 landmarks; Bottom row: 20 landmarks.

Figure 6: Discovering 8 landmarks on shoes.

Figure 7: Discovering 10 landmarks on the profile images of cars.

tation. Sampled results on the AFLW testing set (2,991 im-

ages) are in Appendix E.2.

Cat heads Our model is trained on 7,747 cat head images

and tested on 1,257 images. Compared to human faces, cat

heads show more holistic appearance variations. As shown

in Figure 5, our model can discover consistent landmarks

(e.g., ears, nose, mouth) across different cat species and in-

terestingly predict landmark locations under significant oc-

clusion (the first image). Appendix E.3 shows more results.

Cars We build the profile-view car dataset by cropping the

car images from the PASCAL 3D dataset. This dataset has

a limited number of samples (567 images for training and

63 images for testing). As shown in Figure 7, our method

can still learn meaningful landmarks (e.g., the windshield,

driver-side door, wheels, rear) using a relatively small train-

ing set. Note that we transform the 3D annotations of the

cars to 2D landmarks, so this dataset is ready for quantita-

tive evaluation. Appendix E.4 shows more results.

Shoes We use the same setting as in [59] (49,525, train-

ing images and 500 testing images). As shown in Figure 6,

landmarks are detected at semantically stable locations for

different types of shoes. Appendix E.5 shows more results.

Human3.6M Human3.6M contains human activity videos

in stable backgrounds. We use all 7 subjects in Human3.6M

training set for our evaluation (6 for training and 1 for val-

idation)2. We consider six activities (direction, discussion,

posing, waiting, greeting, walking), in which human bod-

ies are in the upright direction most of the time, result-

ing in 796,648 image frames for training and 87,975 image

2Training subject IDs: S1,S5,S6,S7,S8,S9; Validation subject IDs: S11.

Figure 8: Discovering 16 landmarks on Human3.6M dataset.

frames for testing. We removed the background using the

off-the-shelf unsupervised background subtraction method

provided in the dataset. The human bodies are cropped and

roughly aligned regarding the foot location so that the ex-

cessive background regions are removed.

Compared to previously mentioned object types, human

bodies have much more shape variations. As shown in

Figure 8, our method can discover roughly consistent land-

marks across a range of poses. In particular, the landmarks

at the head, back, waist, and legs are stable across im-

ages. The landmarks at the arms are relatively less consis-

tent across different poses, but they are still at semantically

meaningful locations. Since the human body appearances

in the frontal and back views are similar, we do not expect

our discovered landmarks to distinguish the left and right

sides of the human body, which means that a landmark at

the left leg in the frontal view can locate the right leg in the

back view. Since the training data is in the video format,

optical flows are used as a short-term self-supervision for

the eqvuivariance constraint in (8). Appendix C describes

more details and results for Human3.6M experiments.

4.2. Prediction of ground truth landmarks
Unsupervised landmark learning is useful because of

its potential to discover object structures that are coher-

ent with the human’s perception. We evaluate discov-

ered landmarks’ quality by predicting manually-annotated

landmarks. Specifically, we use a linear model without a

bias term to regress from the discovered landmarks to the

human-annotated landmarks. Ground truth landmark an-

notations are needed to train this linear regressor. Thewlis

et al. [59] extensively used random TPS to augment both

discovered and labeled landmarks for training (on CelebA

and ALFW). However, we do not use data augmentation for

our method to minimize the complexity of training. Even in

this case, our method shows stronger performance.

Stronger relevance to human-designed landmarks. In

Table 1a, we regress the landmarks discovered using the

models trained on the CelebA training set to the 5 anno-



# discovered

landmarks

Regressor

training set

Thewlis

et al. [59]
Ours

10 CelebA 6.32 3.46

30 CelebA 5.76 3.15

50 CelebA 5.33 -

10 MAFL 7.95 3.46

30 MAFL 7.15 3.16

50 MAFL 6.67 -

(a) Comparison with unsupervised landmark learning meth-

ods on the MAFL testing set.

Method MAFL ALFW

RCPR [5] - 11.60

CFAN [77] 15.84 10.94

Fully TCDCN [82] 07.95 07.65

supervised Cascaded CNN [55] 09.73 08.97

RAR [70] - 07.23

MTCNN [81] 05.39 06.90

Thewlis et al. [59] (50 landmarks) 06.67 10.53

Unsupervised Thewlis et al. [58] (dense frames) 05.83 08.80

discovery Ours (10 landmarks) 03.46 07.01

Ours (30 landmarks) 03.15 06.58

(b) Comparison with supervised methods on the MAFL and ALFW

testing sets.

Full L w/o Lrecon w/o Lconc w/o Lsep w/o Leqv

3.15 3.45 3.91 16.56 8.42

(c) Using ablative training losses of our method. Refer to (15)

for each loss terms. Results are obtained on the MAFL testing set

using 10 discovered landmarks.

Table 1: Mean errors of the annotated landmark prediction on hu-

man face datasets. Errors are in % regarding the biocular distance.

tated landmarks. The landmark labels in either the CelebA

training set or the much smaller MAFL training set are used

to train the regressor. Our method is not sensitive to the

decreased size of the labeled training set. It outperforms

Thewlis et al. [59]’s by 55% decrease of the landmark de-

tection error and Thewlis et al. [58]’s by 45%. Notably, we

achieve this with 30 discovered landmarks while theirs uses

50 landmarks or dense object frames. Additionally, Table 2

demonstrates the consistent superiority of our method on

the cat head dataset (7 target landmarks3), the car dataset (6

target landmarks), and Human3.6M4 (32 target landmarks).

Figure 9 illustrates the landmark regression results.

Competitive performance compared to fully supervised

methods. Putting the landmark discovery model together

with the linear regressor, we obtain a detector of human-

designed landmarks. Unlike fully supervised methods, our

model is trainable with a huge amount of unlabeled data,

and the linear regressor can be trained using a relatively

small amount of labeled data within a few minutes. Table 1b

demonstrates that our model outperforms previous unsuper-

vised methods and off-the-shelf pretrained fully-supervised

39 annotated landmarks in total. We do not use the 2 at the ears.
4See Appendix C for details

Ours

Thewlis 

et al. 

Ours

Thewlis 

et al.

0.20

0.15

0.10

0.05

0

Figure 9: Prediction of annotated landmarks. Colorful cross: dis-

covered landmark; Red dot: annotated landmark; Circle: regressed

landmark, whose color represent its distance to the annotated land-

marks. See the color bar for the distance (i.e., prediction error).

Dataset Car Cat head Human3.6M

# discovered landmarks 10 24 10 20 16

Thewlis et al. [59] 11.42 11.11 26.76 26.94 7.51

Ours 05.87 05.80 15.35 14.84 4.14

Table 2: Mean errors of the annotated landmark prediction on the

cat heads, cars, and human bodies. Errors are in % regarding the

biocular distance, bi-wheel distance, and image size, respectively.

models on the MAFL and AFLW testing sets. On AFLW,

we take the 5 always-visible landmarks as the regression

target. All models reported are either trained on the MAFL

training set or publicly available.

Landmark detection with few labeled samples. Taking

our model as a detector of manually annotated landmarks,

we find that less than 200 samples are enough for our model

to achieve less than 4% mean error on the MAFL testing

set, which is better than the performance of TCDCN and

MTCNN. Learning curves are provided in Appendix F.1.

Effectiveness of different loss terms. Our method com-

bines several loss terms in the training objective (15). Ta-

ble 1c shows that the removal of any term can cause per-

formance drop of our model. In particular, the removal of

the separation loss can devastate the model, and more de-

tailed discussion about this loss term is in Appendix F.2.

Our new differentiable formulation of the landmark validity

constraints can already lead to a lower landmark detection

error than Thewlis et al. [59]’s. Adding the reconstruction

loss can further improve the accuracy.

4.3. Visual attribute recognition

Landmarks reflect object shapes. We use our discov-

ered landmarks as a feature representation to recognize the

shape-related binary facial attributes (13 labeled attributes

are found) on CelebA. We still take the MAFL testing set for

the quantitative evaluation. A linear SVM is trained for each

attribute on the CelebA training set. We also compare our

landmark coordinates with pretrained FaceNet [51] (Incep-

tionV1) top-layer (128-dim) and top conv-layer (1792-dim)

features for the attribute recognition task. As shown in Ta-

ble 3, our discovered landmarks (60-dim) outperforms the

FaceNet top-layer features for most attributes. The conv-



Methods

Feature

Dimen-

sion

Arched

Eyebrows

Bags

Under

Eyes

Big

Lips

Big

Nose

Double

Chin

High

Cheek-

bones

Male

Mouth

Slightly

Open

Narrow

Eyes

Oval

Face

Pointy

Nose

Receding

Hairline
Smiling Average

Ours (discovered landmarks) 60 79.4 80.9 76.9 82.3 94.5 82.5 88.4 81.3 88.0 73.2 73.7 92.1 88.8 83.2

FaceNet [51] (top-layer) 128 76.4 80.3 76.8 80.4 94.5 72.6 82.7 74.4 87.9 72.7 73.1 92.2 76.2 80.0

FaceNet (top-layer) + Ours 188 81.3 81.3 77.5 82.6 94.5 83.5 91.2 83.8 88.4 73.7 75.0 92.7 89.9 84.3

FaceNet [51] (conv-layer) 1792 78.8 81.5 77.4 80.5 94.6 77.3 90.0 80.9 88.4 74.2 73.6 92.4 81.5 82.4

FaceNet (conv-layer) + Ours 1852 80.1 81.8 77.2 82.3 94.7 82.1 90.8 85.0 88.6 74.5 73.6 92.4 90.5 84.1

Table 3: Visual attribute recognition using pretrained FaceNet features and our discovered 30 landmarks on the MAFL test set.
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Figure 10: Image manipulation with our discovered landmarks

and landmark-based decoder on the MAFL and Human3.6M test-

ing set. 1st column: input images; 2nd column: discovered land-

marks and reconstructed images; other columns: the red dots for

new landmark locations, the gray lines for the synthetic adjustment

of landmarks, and the images for the decoder outputs.

layer features outperform our landmarks slightly but have a

much higher dimension. Combining the landmark coordi-

nates and the FaceNet features, higher accuracy is achieved.

This suggests that the discovered landmarks are comple-

mentary to image features pretrained on classification tasks.

4.4. Image manipulation and generation

Our jointly trained image decoding module conditioned

its outputs on the input landmarks and their latent descrip-

tors. If the two conditions are disentangled, we should be

able to manipulate the object shape without changing other

appearance factors by adjusting only the landmarks; or, vice

versa. Note that landmark-based image morphing is not a

new topic, and landmark-based hierarchical image decoding

has also been explored recently [46, 64, 47]. However, these

landmarks are all designed and annotated by humans. So

far, little evidence has suggested that the automatically dis-

covered landmarks are accurate and representative enough

as a reliable condition for image generation.

In Figure 10, we synthesize flows to adjust the discov-

ered landmarks of an input image. Fixing the landmark la-

tent descriptors, we obtain realistic facial and human-body

images whose shapes agree with the new landmarks. Other

than the facial and body shape, then appearance factors of

the input image are not visually changed. This result sug-

gests that our image decoding module can synthesize realis-

Figure 11: Face generation conditioned on discovered landmarks.

tic image using the landmarks learned without supervision,

and it also suggests that our discovered landmarks have be-

come an explicit representation disentangled from other fac-

tors of variations for image modeling. Implementation de-

tails and more results about unsupervised landmark-based

face manipulation are available in Appendix A.

In Figure 11, instead of adjusting the landmark coordi-

nates, we use the discovered landmarks of a reference image

as the control signal to generate new facial images. Follow-

ing the GAN framework [18], the latent representation of

the generated image is randomly drawn from a prior distri-

bution. As in Reed et al. [46], the landmark coordinates and

latent representation are combined for image generation.

We adopt BEGAN [3] for the discriminator and training ob-

jective. In addition, we apply a cyclic loss for the landmark

coordinates, which encourages the same landmarks to be

detected on the generated images as on the reference image.

Our results provide additional evidence on the usefulness of

the discovered landmarks for image modeling. Implemen-

tation details are in Appendix G.5.

5. Conclusion

We address the problem of unsupervised object land-

mark discovery and take it as an intermediate step of image

representation learning. In particular, a fully differentiable

neural network architecture is proposed for determining the

landmark coordinates, together with soft contraints to en-

force the validity of the detected landmarks. The discovered

landmarks are visually meaningful and quantitatively more

relevant to human-designed landmarks. In our framework,

the discovered landmarks are an explicit part of the learned

image representations. They are disentangled from the la-

tent representations of the other appearance factors. The

landmark-based explicit representations not only provide an

interface for manipulating the image generation process but

also appear to be complementary to pretrained deep-neural-

network features for solving discriminative tasks.
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