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Unsupervised Discovery of Object Landmarks as Structural Representations

Desirable Properties of Object Landmarks as Regularization

Landmarks as Intermediate Representations in Autoencoder 

Unsupervised Learning of Explicit Representation
q Deep neural networks can model images with rich latent representations 

but cannot naturally conceptualize structures of object. 
q Our method learns object structures as explicit representations for image modeling. In particular, we 

proposed an autoencoder framework to discover meaningful object landmarks without supervision.
q Landmarks: Salient points semantically consistent across object instances.  
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Figure 1: Neural network architectures of our autoencoding framework for unsupervised landmark discovery. See text for the details.

landmarks and unsupervised image modeling. Figure 1
summarizes the neural network architecture.

3.1. Architecture of landmark detector
Landmark localization can be formulated as a point de-

tection problem [41]. Each landmark has a corresponding
detector, which convolutionally outputs a detection score
map with the detected landmark located at the maximum.
Following the same framework, we use a deep neural net-
work to transform an image I to a (K+1)-channel detection
confidence map

D = image2detmap(I) 2 [0, 1]W⇥H⇥(K+1)
. (1)

This map detects K landmarks, and the (K +1)-th channel
represents background. D’s resolution W⇥H can be either
equal to or less (or even greater) than I, but the coordinate
of D need to be strictly proportional to that of I.

Inspired by the success of the stacked hourglass network
in human pose estimation [41], we propose a light-weighted
hourglass-style network to get the raw detection score map

R = hourglass
`
(I;�`) 2 RW⇥H⇥(K+1)

, (2)

where �` consists of the model parameters. The proposed
architecture allows detectors to focus on the critical local
patterns at landmark locations while leveraging higher-level
signal to guide the understanding of local patterns. The de-
tailed architecture is described in the supplementary materi-
als. We normalize the raw detection score map across chan-
nels using softmax and obtain the confidence map

Dk(u, v) =
exp(Rk(u, v))P

K+1
k0=1 exp (Rk0(u, v))

, (3)

where the matrix Dk is the k-th channel of D, and the scalar
Dk(u, v) for u = 1, 2, . . . ,W and v = 1, 2, . . . , H is the

value of Dk at the pixel (u, v). Later, we also use the vector
D(u, v) to denote the multi-channel value of D at (u, v).
The same convention applies to other three-dimensional
tensor notations. Note that the softmax normalization, also
used in Fast R-CNN [18] for object detection, encourages
each channel to detect a different pattern and takes the back-
ground response into account.

Taking the nonnegative Dk as a weighting map, we use
the weighted mean coordinate as the location of the k-th
landmark. Formally, we first calculate the normalized map

Dk(u, v) = Dk(u, v)/
HX

v=1

WX

u=1

Dk(u, v), (4)

and the landmark coordinate is

(xk, yk) =
HX

v=1

WX

u=1

(u, v) ·Dk(u, v). (5)

This formulation enables back-propagating the gradient
from the downstream neural network through the landmark
coordinates unless Dk’s mass is totally concentrated in a
single pixel or totally uniformly distributed, which rarely
happens in practice. As a shorthand, we write the landmarks
and landmark detector as

` = [x1, y1, . . . , xK , yK ]> = landmark(I;�`). (6)

The left half of the blue pathway in Figure 1 illustrates the
landmark detector.

3.2. Visual concept of landmarks
The elements in ` are supposed to be the discovered land-

mark coordinates, but so far, we have no guarantee to pre-
vent them from being arbitrary latent representations. To
realize the coordinates as landmarks, we propose the fol-
lowing soft constraints as parts of the training objective to
enforce the necessary properties for being landmarks.
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q Train a linear regressor to map the discovered landmarks to the human annotated landmarks.
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q Heatmap concentration constraint: reduce the 
spatial variance of D

q Landmark separation constraint: Landmarks 
cannot be too close

q Equivariance constraint: when the image warps, the landmark coordinates should 
warp accordingly. Random thin-plate-spline (TPS) warping is used in training. 

For videos, also use the optical flows 
as the transformation g.

Concentration constraint As a detection confidence map
for a single location, the mass of Dk need to be concen-
trated in a local region. Taking Dk as the density of a bi-
variate distribution on the image coordinate, we compute its
variance �2

det,u and �
2
det,v along the two axes. We define the

concentration constraint loss as follows to encourage both
variances to be small.

Lconc =
⇡e

2

�
�
2
det,u + �

2
det,v

�2
. (7)

The above equation makes Lconc the exponential of the
entropy of the isotropic Gaussian distribution N ((xk, yk),
diag(�2

det,�
2
det)), where �

2
det = (�2

det,u + �
2
det,v)/2. This

Gaussian distribution can be taken as an approximation of
Dk, and lower entropy indicates a more peaked distribution.
Separation constraint The K landmarks are expected to
cover different local regions of the image. Ideally, the au-
toencoding training objective can automatically encourage
landmarks to be distributed at different locations so that the
whole image can be reconstructed. However, because of the
initial randomness in the detection confidence map D, the
mean coordinates that define the landmark locations can be
all around the image center, resulting in local optima from
which the gradient descent optimizer may not easily escape.
Consequently, the autoencoder can focus only on the local
region with clustered landmarks and overlook the remain-
der. To circumvent this difficulty, we introduce an explicit
loss to spatially separate the landmarks:

Lsep =
1,...,KX

k 6=k0

exp

 
�
k(xk0 , yk0)� (xk, yk)k22

2�2
sep

!
. (8)

Equivariance constraint Most importantly, a landmark
should locate a stable local pattern (with definite seman-
tics). This requires landmarks to show equivariance to im-
age transformations. More specifically, a landmark should
move according to the transformation (e.g., camera and ob-
ject motion) applied to the image if the corresponding vi-
sual semantic still exists in the transformed image. Let
g(·, ·) be a coordinate transformation that map image I to
I0(u, v) = I(g(u, v)), and `0 = [x0

1, y
0
1, . . . , x

0
K
, y

0
K
]> =

landmark(I0). We ideally have g(x0
k
, y

0
k
) = (xk, yk), in-

ducing the soft constraint

Leqv =
KX

k=1

kg(x0
k
, y

0
k
)� (xk, yk)k

2
2 , (9)

This loss function is well defined when g is known. Inspired
by Thewlis et al. [62], we simulate g by a thin plate spline
(TPS) [4] with random parameters. We use random trans-
lation, rotation, and scaling to determine the global affine
component of the TPS; and, we spatially perturb a set of
control points to determine the local TPS component. Be-
sides the conventional way of selecting TPS control points

at a predefined uniform grid (as used in [62]), we also take
the landmarks detected by the current model as the con-
trol points to improve simulated transformation’s focus on
key image patterns. The two sets of control points are al-
ternatively used in each optimization iteration with 7 : 3
chance. Moreover, when training sample appear in the form
of video, we can also take the dense motion flow as g and
the actual next frame as I0.
Cross-object correspondence Our model does not explic-
itly ensure the semantic correspondence among the land-
marks discovered on different object instances. The cross-
object semantic stability of the landmarks mainly relies on
the fact that visual patterns activating the same convolu-
tional filter are likely to share semantic similarities.

3.3. Local latent descriptors
For simple images focusing on object shapes, like in

MNIST [30] (see results for MNIST in the supplementary
materials), multiple landmarks are largely sufficient to de-
scribe the shapes. For color images, however, landmarks are
generally insufficient to encode all major information of the
visual content. Extra latent representations are needed to
encode complementary information. Those latent represen-
tations should neither encode too much holistic information
that can overwhelm the image structures reflected by the
landmarks; otherwise, the autoencoder would not provide
enough driving force to localize landmarks at meaningful
locations. To this end, we attach a low-dimensional local
descriptor to each landmark.

An hourglass-style neural network is introduced to ob-
tain a feature map F, which has the same size as the detec-
tion confidence map D and encodes higher-level informa-
tion in the meanwhile:

F = hourglass
f
(I;�f ) 2 RW⇥H⇥S

. (10)

We design the architecture of hourglass
f

in a way that the
receptive field of a pixel in F is significantly smaller than
the size of the input image, so a single pixel of F cannot
encode the entire image. Note that F is in a feature space
shared among all landmarks and has S channels.

For each landmark, we use an average pooling weighted
by the normalized confidence map Dk to extract the fea-
ture in the shared space at the landmark location, and then
we use a learnable linear operator to map the feature rep-
resentation into a lower-dimensional individual space. In
particular, the latent descriptor for the k-th landmark is

fk = Wk

HX

v=1

WX

u=1

�
Dk(u, v) · F(u, v)

�
2 RC

, (11)

where C < S. The landmark-specific linear operator en-
ables each landmark descriptor to encode a particular pat-
tern in limited bits. We can also use (11) to extract a low-
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Method MAFL ALFW

Fully 
supervised

TCDCN 7.95 7.65
Cascaded CNN 9.73 8.97

RAR - 7.23
MTCNN 5.39 6.90

Unsupervised 
discovery

Thewlis et al. (50 landmarks) 6.67 10.53
Thewlis et al. (dense frames) 5.83 8.80

Ours (10 landmarks) 3.46 7.01
Ours (30 landmarks) 3.15 6.58
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Method Feature 
dimension Accuracy

Ours (discovered landmarks) 60 83.2
FaceNet (top-layer) 128 80.0
FaceNet (top-layer) + Ours 188 84.3
FaceNet (conv-layer) 1792 82.4
FaceNet (conv-layer) + Ours 1852 84.1

Human facial landmark detection

Ablative study on CelebA/MAFL

Less labeled data for the linear regressor

Landmark detection on other types of objects

Figure 7: Discovering 16 landmarks on Human3.6M dataset.

bodies have much more shape variations. As shown in
Figure 7, our method can discover roughly consistent land-
marks across a range of poses. In particular, the landmarks
at the head, back, waist, and legs are stable across im-
ages. The landmarks at the arms are relatively less consis-
tent across different poses, but they are still at semantically
meaningful locations. Since the human body appearances in
the frontal and rear views are similar, we do not expect our
discovered landmarks to distinguish the left and right sides
of the human body, which means that a landmark at the left
leg in the frontal view can locate the right leg in the rear
view. Exploring stronger self-supervision may be a future
direction to solve this problem in unsupervised settings.

4.2. Prediction of ground truth landmarks
Unsupervised landmark learning is useful because of its

potential to discover object structures that are coherent with
the human’s perception. The predictiveness of manually-
annotated landmarks is an indicator of the discovered land-
marks’ quality. To directly measure the relevance of the
discovered and human-annotated landmarks, we use a linear
model without a bias term to regress the former to the lat-
ter. Ground truth landmark annotations are needed to train
this linear regressor. Thewlis et al. [62] extensively used
random TPS to augment both discovered and labeled land-
marks for training. However, we do not use data augmen-
tation for our method to minimize the complexity of devel-
oping the regression model. Even in this case, our method
shows stronger performance.
Stronger relevance to human-designed landmarks. In
Table 1a, we regress the landmarks discovered using the
models trained on the CelebA training set to the annotated
landmarks. The landmark labels in either the CelebA train-
ing set or the much smaller MAFL training set are used to
train the regressor. Five target landmarks are available for
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Figure 8: Prediction of annotated landmarks. Colorful cross: dis-
covered landmark; Red dot: annotated landmark; Circle: regressed
landmark, whose color represent its distance to the annotated land-
marks. See the color bar for the distance (i.e., prediction error).

the regressor training and testing. Our method is not sen-
sitive to the decreased size of the labeled training set. It
outperforms Thewlis et al. [62]’s by 40% decrease of the
landmark detection error. Notably, we achieve this with 30
discovered landmarks and a smaller labeled set while theirs
uses 50 landmarks on a larger labeled set. Additionally, Ta-
ble 2 demonstrates the consistent superiority of our method
on the cat head dataset (7 target landmarks) and the car
dataset (6 target landmarks). Figure 8 illustrates the land-
mark regression results.
Comparable performance to fully supervised methods.
Putting the landmark discovery model together with the lin-
ear regressor, we obtain a detector of human-designed land-
marks. Unlike fully supervised methods, our model is train-
able with a huge amount of unlabeled data, and the linear
regressor can be trained using a relatively small amount of
labeled data within few minutes. Table 1b demonstrates that
our model outperforms previous unsupervised methods and
performs comparably or better than fully-supervised meth-
ods on the MAFL and AFLW testing sets. On AFLW, we
take the five always-visible landmarks as the regression tar-
get. All models reported are either trained on the MAFL
training set or replicated with the off-the-shelf code.
Landmark detection with few labeled samples. Taking
our model as a detector of manually annotated landmarks,
we find that less than 200 samples are enough for our model
to achieve less than 4% mean error on the MAFL testing
set, which is better than the performance of TCDCN and
MTCNN. Learning curves are provided in the supplement.
Effectiveness of different loss terms. We found that all
our proposed soft constraints contributed to improved per-
formance. Due to space constraint, we provide the ablative
study on loss terms in (16) in the supplement.

4.3. Visual attribute recognition
Landmarks reflect object shapes. We use our discov-

ered landmarks as a feature representation to recognize the
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ble 2 demonstrates the consistent superiority of our method
on the cat head dataset (7 target landmarks) and the car
dataset (6 target landmarks). Figure 8 illustrates the land-
mark regression results.
Comparable performance to fully supervised methods.
Putting the landmark discovery model together with the lin-
ear regressor, we obtain a detector of human-designed land-
marks. Unlike fully supervised methods, our model is train-
able with a huge amount of unlabeled data, and the linear
regressor can be trained using a relatively small amount of
labeled data within few minutes. Table 1b demonstrates that
our model outperforms previous unsupervised methods and
performs comparably or better than fully-supervised meth-
ods on the MAFL and AFLW testing sets. On AFLW, we
take the five always-visible landmarks as the regression tar-
get. All models reported are either trained on the MAFL
training set or replicated with the off-the-shelf code.
Landmark detection with few labeled samples. Taking
our model as a detector of manually annotated landmarks,
we find that less than 200 samples are enough for our model
to achieve less than 4% mean error on the MAFL testing
set, which is better than the performance of TCDCN and
MTCNN. Learning curves are provided in the supplement.
Effectiveness of different loss terms. We found that all
our proposed soft constraints contributed to improved per-
formance. Due to space constraint, we provide the ablative
study on loss terms in (16) in the supplement.

4.3. Visual attribute recognition
Landmarks reflect object shapes. We use our discov-

ered landmarks as a feature representation to recognize the

Predicting 13 
binary facial 
attributes 
related to the 
facial shape 
on CelebA.

q Outperforming previous unsupervised methods 
and off-the-shelf fully supervised methods.

q All training objectives contribute to the final results.

q Useful for semi-supervised landmark detection
q < 500 labeled samples are enough

q Wide applicability to many object categories.

q Our method can discover visually meaningful and stable landmarks on several object categories. q Our discovered landmarks are effective representations 
for shape-related facial attribute prediction.

q Our model provides a landmark-conditioned image decoder.
q The discovered landmarks are disentangled from the 

appearance latent features automatically.

† ‡

A. More details and results on face manipulation using unsupervised landmarks
The discovered landmarks constitute the explicitly structural part of the image representation learned by our model. They

provide an interface for humans to manipulate the image representation intuitively. Our decoding module can generate
realistic facial images using the landmark descriptors extracted from a given image and different sets of landmarks. For
better image quality, we use 2 ⇠ 4 times the hidden units for each layer of the image feature extractor hourglass

f
and the

decoder hourglass
d

as in our landmark discovery models (described in Figure 35, Section G.2).
In addition to the results shown in the main paper, we provide more qualitative results for unsupervised landmark-based

face manipulation in this section. We train a model of 20 landmarks (less than the 30 landmarks we used in the main paper)
for the clarity of visualization. To evaluate our method on many target landmarks, we take the landmarks discovered from
other images and the interpolation/extrapolation between the landmarks discovered on two images as the targets.

Figure 11 and 12 show results for manipulating all 20 landmarks. Figure 13 and 14 show results for manipulating the
3 landmarks at the mouth. Videos are available in the following folders for gradually morphing the landmarks from their
original coordinates to the target by linear interpolation.

• videos/face-manipulation-all-landmarks ; videos/face-manipulation-mouth-landmarks
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(a) Video: videos/face-manipulation-all-landmarks/01.mp4
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(b) Video: videos/face-manipulation-all-landmarks/02.mp4
Landmarks

M
anipulated

im
ages

O
rig

in
al

im
ag

es

(c) Video: videos/face-manipulation-all-landmarks/03.mp4
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(d) Video: videos/face-manipulation-all-landmarks/04.mp4

Figure 11: Face manipulation by modifying all 20 discovered landmarks on the MAFL testing set. 1st column: input images; 2nd col-
umn: discovered landmarks and reconstructed images; other columns: the red dots denote the target landmark locations (gray dots means
not too much offset regarding the original landmarks), the gray lines denote the synthetic adjustment of landmarks, and the facial images
are the decoder outputs. Best viewed in zoom mode. Videos are available at videos/face-manipulation-all-landmarks for
the morphing process.
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(a) Video: videos/face-manipulation-all-landmarks/05.mp4
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(b) Video: videos/face-manipulation-all-landmarks/06.mp4
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(c) Video: videos/face-manipulation-all-landmarks/07.mp4
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(d) Video: videos/face-manipulation-all-landmarks/08.mp4
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(e) Video: videos/face-manipulation-all-landmarks/09.mp4
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(f) Video: videos/face-manipulation-all-landmarks/10.mp4

Figure 12: Continued from Figure 11. Face manipulation by modifying all 20 discovered landmarks on the MAFL testing set.
1st column: input images; 2nd column: discovered landmarks and reconstructed images; other columns: the red dots denote the
target landmark locations (gray dots means not too much offset regarding the original landmarks), the gray lines denote the syn-
thetic adjustment of landmarks, and the facial images are the decoder outputs. Best viewed in zoom mode. Videos are available at
videos/face-manipulation-all-landmarks for the morphing process.
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Unsupervised Discovery of Landmarks as Structural Representations
We thank reviewers for their insightful comments, as

well as acknowledging our novel contributions on an impor-
tant but relatively unexplored problem of unsupervised ob-
ject landmark discovery and learning representations with
explicit structures. We will reflect all your comments in the
revision, such as including more ablative studies, improving
presentation, and using clearer terminologies.

Please note that we did more hyperparameter search to
provide numbers in the rebuttal. Code will be released.
R2: Heatmap w/ and w/o separation loss

Figure A shows the evolution of the heatmaps. Without
the separation loss, the heatmap can converge to the center.

1 2 3 … 9 10 LandmarksLandmarks No.

Initial 
(Iter. 0)

No Seperation 
Loss (mid-stage)

No Seperation 
Loss (final)

Full model
(mid-stage)

Full model 
(final)

…

…

…

…

…

Figure A: Detection heatmap D. Full figure will be included.

R1: Optical flows for equivariance on Human 3.6M
Using optical flows of 10-frame intervals for the equiv-

ariance, the GT landmark prediction error can be reduced
by 0.8 (4.9!4.1) in a rigorous control setting. Our model
can also be used for human body manipulation (Figure B).
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Figure B: Human manipulation with our decoder and landmarks.

R1: Design choices (using updated CelebA 10-landmark models)
TPS control points: In our submission, we tried only
grid : landmark = 7 : 3 and didn’t tune it further. Based on
your comments, we performed additional experiments with
different ratios, and obtained similar results when using the
ratio of 5:5. We expect that the performance will be fairly
insensitive to the ratio in this range, but we will perform ad-
ditional parameter sweep and discuss results in the revision.

grid : landmark 10:0 5:5 7:3 7:3 (submitted)
GT prediction error 4.17 3.77 3.68 3.77

Multi-scale �dec: Regarding GT landmark prediction er-
rors, a well-tuned single scale for each scenario can perform
similarly (3.51), but a sub-optimal scale can hurt the per-

formance (4.17, 4⇥ smaller scale). Multi-scale �dec (3.68)
avoids tuning this parameter either offline or during train-
ing. We use the same multi-scale values in all scenarios.
Hyperparameter �distr = 1/40: To make the parameters
invariant to input size, we used the normalized scale regard-
ing the square root of the image area (i.e., image size).
Normalization methods: The encoder raw heatmap R is
unbounded (i.e., in R), so softmax is used. The decoder
raw heatmap R̃ is non-negative and bounded, so an ordinary
normalization is used. Based on our previous observation,
softmax in the decoder could hurt image reconstruction.
Wk and W̃k: They did not appear to be pseudo-inverse of
each other. We will investigate and discuss this further.
R3: Potential bias to the image center

Due to the weighted-mean formulation in Eq. (4) for cal-
culating the landmark coordinates, it is quite reasonable to
be concerned about the potential bias to the image center.
However, the minor inaccuracy in the 2nd and 10th images of
Figure 3 and the 2nd image in Figure 4 is more likely caused
by large pose changes. The major portion of the training
faces are near-frontal, the discovered landmarks may appear
less ideal for underrepresented poses.

Our method has two mechanisms to avoid the poten-
tial bias to the center. 1) The random transformation used
for the equivariance constraint in Eq. (8) considers random
translation and scaling, so half of the images fed to the en-
coder are non-centered. 2) The separation loss makes the
landmarks scattered (Figure A), so the learned model can
avoid the bias toward center. Figure C illustrates the perfor-
mance of our model on non-centered facial images.

Figure C: Landmark detection on non-centered facial images. Our
model is directly applied. As the model uses updated hyperparam-
eters, the landmarks are not all the same as in the submission.

R3: With distracting background
Figure C partially illustrates our method’s robustness to

real-world image backgrounds. Our method can work out-
of-the-box on head-shoulder portraits without training on
exactly the same type of images. However, our method will
be difficult to apply when the foreground portion is very
small (e.g., discovering face landmarks from full body im-
ages). As R3 said, prominent background patterns can dis-
tract our model in this case. In such challenging scenar-
ios, our model can be used after first applying an off-the-
shelf foreground object detector. After all, the model aims
to discover the internal structures of the dominating object,
and although it is not trained against diverse image back-
grounds, the model shows some robustness as in Figure C.

reconstructed manipulated


