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Abstract. We introduce the task of Image-Set Visual Question Answer-
ing (ISVQA), which generalizes the commonly studied single-image VQA
problem to multi-image settings. Taking a natural language question and
a set of images as input, it aims to answer the question based on the con-
tent of the images. The questions can be about objects and relationships
in one or more images or about the entire scene depicted by the image set.
To enable research in this new topic, we introduce two ISVQA datasets
– indoor and outdoor scenes. They simulate the real-world scenarios of
indoor image collections and multiple car-mounted cameras, respectively.
The indoor-scene dataset contains 91,479 human-annotated questions for
48,138 image sets, and the outdoor-scene dataset has 49,617 questions
for 12,746 image sets. We analyze the properties of the two datasets, in-
cluding question-and-answer distributions, types of questions, biases in
dataset, and question-image dependencies. We also build new baseline
models to investigate new research challenges in ISVQA.

1 Introduction

Answering natural-language questions about images requires understanding both
linguistic and visual data. Since its introduction [4], Visual Question Answering
(VQA) has attracted significant attention. Several related datasets [22,33,14]
and methods [9,20,12] have been proposed.

In this paper, we introduce the new task of Image Set Visual Question An-
swering (ISVQA) 1. It aims to answer a free-form natural-language question
based on a set of images. The proposed ISVQA task requires reasoning over ob-
jects and concepts in different images to predict the correct answer. For example,
for figure 1 (Left), a model has to find the relationship between the bed in the
top-left image and the mirror in the top-right, via pillows which are common
to both the images. This example shows the unique challenges associated with
image-set VQA. A model for solving this type of problems has to understand the
question, find the connections between the images, and use those connections to
relate objects across images. Similarly, in figure 1 (Right), the model has to avoid
double-counting recurring objects in multiple images. These challenges associ-
ated with scene understanding have not been explored in existing single-image
VQA settings but frequently happen in the real world.

? This work was done when Ankan Bansal was an intern at AWS.
1 Project page: https://ankanbansal.com/isvqa.html
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Fig. 1: (Left) Given the set of images above, and the question “What is hanging
above the bed?”, it is necessary to connect the bed in the top-left image to
the mirror in the top-right image. To answer this question a model needs to
understand the concepts of “bed”, “mirror”, “above”, “hanging”, etc. and be
able to relate the bed in the first image with the headrest and pillows in the
third image. (Right) When asked the question “How many rectangles are on the
interior doors?”, the model should be able to provide the answer (“four”) and
avoid counting the same rectangles multiple times.

ISVQA reflects information retrieval from multiple images of relevance but
with no obvious continuous correspondences. Such image sets can be any albums
and images captured by multiple devices, e.g., images under the same story on
Facebook/Instagram, images of the same product on Craigslist and Amazon,
pictures of the same house on real estate websites, and images from different
car-mounted cameras. Other instances of the ISVQA task include answering
questions about images taken at different times (e.g. like in camera trap photog-
raphy), at different locations (e.g. multiple cameras from an indoor or outdoor
location), or from different viewpoints (e.g. live sports coverage). Some of these
settings contain images taken from the same scene, while others might involve
images of a larger span. While ISVQA can be generally applied to any type of
images, in this paper, we focus on images from multiple views of an environment,
especially street and indoor scenes.

ISVQA may require finding the same objects in different images or deter-
mining the relationships between different objects within or across images. It
can also entail determining which images are the most relevant for the ques-
tion and then answering based only on them, ignoring the other images. ISVQA
leads to new research challenges, including: a) How to use natural language to
guide scene understanding across multiple views/images; and b) how to fuse
information from relevant images to reason about relationships among entities.

To enable research into these problems, we built two datasets for ISVQA -
one for indoor scenes and the other for outdoor scenes. The indoor scenes dataset
comes from Gibson Environment [31] and contains 91,479 human-generated ques-
tions, each for a set of images - for a total of 48,138 image sets. Similarly, the
outdoor scenes dataset comprises of 49,617 questions for 12,746 image sets. The
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images in the outdoor scenes dataset come from the nuScenes dataset [5]. We
explain the data collection methodology and statistics in section 3.

The indoor ISVQA dataset contains two parts: 1.) Gibson-Room - containing
images from the same room; and 2.) Gibson-Building - containing images from
different places in the same building. This is to facilitate spatial and semantic
reasoning both in localized and extended regions in the same scene. The outdoor
dataset contains image sets taken from mostly urban environments.

We propose two extensions of single-image VQA methods as baseline ap-
proaches to investigate the ISVQA task and the datasets. In addition, we also use
an existing Video VQA approach as a simple baseline. Finally, we also propose
to use use a transformer-based approach which can specifically target ISVQA.
Such baselines meet significant difficulties in solving the ISVQA problem, and
they reflect the particular challenges of the ISVQA task. We also present the
statistics of the datasets, by analyzing the types of question, distributions of
answers for different types of questions, and biases present in the dataset.

In summary, we make the following major contributions in this work.

- We propose ISVQA as a new setting for scene understanding via Q&A;
- We introduce two large-scale datasets for targeting the ISVQA problem. In

total, these datasets contain 141,096 questions for 60,884 sets of images.
- We establish baseline methods on ISVQA tasks to recognize the challenges

and encourage future research.

2 Related Works

VQA settings. The basic VQA setting [4] involves answering natural language
questions about images. The VisualGenome dataset [17] also contains anno-
tations for visual question-answer pairs at both image and region levels. Vi-
sual7W [33] built upon the basic VQA setting and introduced visual grounding
to VQA. Several other VQA settings target specific problems or applications.
For example, VizWiz [13] was designed to help answer questions asked by blind
people. RecipeQA [32] is targeted for answering questions about recipes from
multi-modal cues. TallyQA [1], and HowMany-QA [30] specifically target count-
ing questions for single images. Unlike these, the CLEVR [16] benchmark and
dataset uses synthetically generated images of rendered 3D shapes and is aimed
towards understanding the geometric relationships between objects. IQA [11] is
also a synthetic setting where an agent is required to navigate a scene and reach
the desired location in order to answer the question.

Unlike existing work, ISVQA targets scene understanding by answering ques-
tions which might require multiple images to answer. This important setting has
not been studied before and necessitates a specialized dataset. Additionally, an-
swering most of the questions requires a model to ignore some of the images in
the set. This capability is absent from many state-of-the-art VQA models.

We also distinguish our work from video VQA. Unlike many such datasets
(e.g. TVQA+ [18], MovieQA [29]), our datasets do not contain any textual cues
like scripts or subtitles. Also, videos are temporally continuous and are usually
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taken from a stationary view-point. This makes finding associations between
objects across frames easy, even if datasets do not provide textual cues (e.g.
tGIF-QA [15]). The image sets in ISVQA dataset are not akin to video frames.
Also, unlike embodied QA [6], ISVQA does not have an agent interacting with
the environment. ISVQA algorithms can use only the few given images, which
resembles real-world applications. Embodied QA does not require sophisticated
inference of the correspondence between images, as the frames that an agent
sees are continuous. The agent can reach the desired location, and answer the
question using only the final frame. In contrast, ISVQA often needs reasoning
across images and an implicit understanding of a scene.

VQA methods. Most of the recent VQA methods use attention mechanisms to
focus on the most relevant image regions. For example, [3] proposed a bottom-up
and top-down attention mechanism for answering visual questions. In addition,
several methods which use co-attention (or bi-directional) attention over ques-
tions and images have been proposed. Such methods include [21,9], all of which
use the information from one modality (text or image) to attend to the other.
Somewhat different from these is the work from Gao et al. [10] which proposed
the multi-modality latent interaction module which can model the relationships
between visual and language summaries in the form of latent vectors.

Unlike these, [7] used reasoning modules over detected objects to answer
questions about geometric relationships between objects. Similarly, Santoro et
al. [24] proposed using Relation Networks to solve specific relational reasoning
problems. Neither of these approaches used attention mechanisms. In this paper,
we mostly focus on attention-based mechanisms to design the baseline models.

3 Dataset

The main goal of our data collection effort is to aid multi-image scene under-
standing via question answering. We use two publicly available datasets (Gibson
[31] and nuScenes [5]) as the source of images to build our datasets. Gibson
provides navigable 3D-indoor scenes. We use the Habitat API [25] to extract
images from multiple locations and viewpoints from it. nuScences contains sets
of images taken simultaneously from multiple cameras on a car.

3.1 Annotation Collection

Indoor Scenes. Gibson is a collection of 3D scans of indoor spaces, particularly
houses and offices. It provides virtualized scans of real indoor spaces like houses
and offices. Using the Habitat platform, we place an agent at different locations
and orientations in a scene and store the views visible to the agent. We generate a
set of images by obtaining several views from the same scene. Therefore, together,
each image set can be considered to represent the scene.

We collect two types of indoor scenes: 1.) Gibson-Building; and 2.) Gibson-
Room. Gibson-Building contains multiple images taken from the same building
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by placing the agent at random locations and recording its viewpoint while
Gibson-Room is collected by obtaining several views from the same room.

For Gibson-Building, we sample image sets by placing an agent at random
locations in the scene. We show images from Gibson-Building sets to annotators
and request them to ask questions about the scene.

We obtain question-answer annotations for a scene from several annotators
using Amazon Mechanical Turk. We let each annotator ask a question about the
scene and also provide the corresponding answer. We request that the annotators
should ensure that their question can be answered using only the scene shown
and no additional knowledge should be required.

From a pilot study, we observed that it is easier for humans to frame questions
if they are shown the full 3D view of a scene, simulating the situation of them
being present in the scene. Humans are able to frame better questions about
locations of objects, and their relationships in such a setting. For Gibson-Room,
we simulate such immersion by creating a 360◦ video from a room. We show
these videos (see supplementary material for examples of how these videos are
created) to the annotators and ask them to provide questions and answers about
the scenes. This process helped annotators understand the entire scene more
easily and enabled us to collect more questions requiring across-image reasoning.
Videos are not used for annotating nuScene and Gibson-Building.

Note that the ISVQA problem and datasets do not have videos. The images
for Gibson-Room still came from random views as previously described. It is
possible that the image set has less coverage of the scene than the video. Just
using the image set, it might not be possible to answer the questions collected
on the video. We prune out those cases by by asking other human-annotators to
verify if the question can be answered using the provided image set.

Outdoor Scenes. We collect annotations for the nuScenes dataset similar to
the Gibson-Building setting. We show the annotators images from an image set.
These represent a 360 degree view of a scene. We, again, ask them to write
questions and answers about the scene as before.

Refining Annotations. We showed all the image sets in our datasets and
the associated questions obtained from the previous step to up to three other
annotators. We asked them to provide an answer to the question based only on
the image set shown. We also asked them to say “Not possible to answer” if the
question cannot be answered. This step increases confidence about an answer if
there is a consensus among the annotators. This step has the added benefit of
ensuring that the question can be answered using the image set.

In addition, we also asked the annotators at this stage to mark the images
which are required to answer the given question. This provides us information
about which images are the most salient for answering a question.

Train and Test Splits. After refinement, we divided the datasets into train
and test splits. The statistics of these splits are given in table 1. For test splits,
we have select samples for which at least two annotators agreed on the answer.
We also ensured that the train and test sets have the same set of answers.
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Table 1: Statistics of train and test splits of the datasets.
Dataset #Train sets #Test sets #Unique answers

Indoor - Gibson (Room + Building) 69,207 22,272 961
Outdoor - nuScenes 33,973 15,644 650

3.2 Dataset Analysis

Fig. 2: Question wordclouds for Gibson (left) and nuScenes (right) datasets.

Question word distributions. The question word clouds for datasets are
shown in figure 2. We have removed the first few words from each question
before plotting these. This gives us a better picture of which objects people are
interested in. Clearly, for outdoor scenes, people are most interested in objects
commonly found on the streets and their properties (types, colors, numbers). On
the other hand, for indoor scenes, the most frequent questions are about objects
hanging on walls and kept on beds, and the room layouts in general.
Types of Questions. Figure 3a shows the distribution of question lengths for
the dataset. We observe that a large chunk of the questions contain between 5
and 10 words. Further, figure 3b shows the numbers of the most frequent types
of questions for the dataset. We observe that the most frequent questions are
about properties of objects, and spatial relationships between different entities.

To understand the types of questions in the dataset, we plot the distribution
of the most frequent first five words of the questions in the whole dataset in
figure 3c. Note that a large portion of the questions are about the numbers of
different kinds of objects. Another major subset of the questions are about geo-
metric relationships between objects in a scene. A third big part of the dataset
contains questions about colors of objects in scenes. Answering questions about
the colors of things in a scene requires localization of the object of interest. De-
pending on the question, this might require reasoning about the relationships
between objects in different images. Similarly, counting the number of a partic-
ular type of object requires keeping track of previously counted objects to avoid
double counting if the same object appears in different images.
Answer Distributions. Figure 4 shows the distribution of answers in the
dataset for frequently occurring questions types. On one hand, due to human
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Fig. 3: (Left) Distribution of questions over no. of words. (Middle) Most frequent
types of questions in the dataset. (Right) First five words of the questions.

bias in asking questions, dominant answers exist for a few types of questions,
such as “can you see the” (usually for an object in the image) and “what is this”
(usually a large object). In ISVQA and other VQA datasets humans’ tendency
to only ask questions about objects that they can see leads to a higher frequency
of “yes” answers. On the other hand, most question types do not have a dom-
inant answer. Of particular note are the questions about relative locations and
orientations of objects, e.g. “What is next to”, and questions about the numbers
of objects e.g. “How many chairs are” etc. This means that it is difficult for a
model to perform well by lazily exploiting the statistics of question types.
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Fig. 4: Answer distributions for several types of questions in the whole dataset.

Number of Images Required. While refining the annotations, we also col-
lect annotations for which images are required to answer the given question. In
figure 5, we plot the number of images required to answer each question for all
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datasets. For the plot in figure 5, we only consider those image sets for which
at least 2 annotators agree about the images which are needed. We observe
that one-third of the samples (about 7,000/21,000) in Gibson-Room require at
least two images to answer the question. As expected, this ratio is lower for
Gibson-Building dataset. However, for all three datasets, we have a large num-
ber of questions which require more than one image to answer. The large number
of samples in both cases enable the study of both across-image reasoning and
image-level focusing. In particular, the latter case also involves rejecting most of
the images in the image set and focusing only on one image. In theory, such ques-
tions can potentially be answered by using existing single-image VQA models.
However, this would require the single-image VQA model to say “Not possible
to answer” for all the irrelevant images and finding only the most relevant one.
Current VQA models do not have the ability to do this in many cases. (see
supplementary material for examples).
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Fig. 5: Number of images required to answer different types of questions.

4 ISVQA Problem Formulation and Baselines

4.1 Problem Definition

Refer to figure 6 for some examples of the ISVQA setting. Given a set of images,
S = {I1, I2, . . . , In}, and a natural language question, Q = {v1, v2, . . . , vT },
where vi is the ith word in the question, the task is to provide an answer, a =
f(S,Q), which is true for the given question and image set. The function f can
either output a probability distribution over a pre-defined set of possible answers,
A, or select the best answer from several choices which are input along with the
question, i.e., a = f(S,Q,CQ), where CQ is the list of choices associated with
Q. The former is usually called open-ended QA and the latter is called multiple-
choice QA. In this work, we mainly deal with the open-ended setting. Another
possible setting is to actually generate the answer using a text generation method
similar to image-captioning. But, most existing VQA works focus on either of
the first two settings and therefore, we also consider the open-ended setting in
this work. We leave the harder problem of generating answers to future work.
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what the largest object in the room? what is above the toilet wall? what kind of car is in front of the white car?

Fig. 6: Some examples from our dataset which demonstrate the ISVQA problem
setting. In each case, input is a set of images and a question.

4.2 Model Definitions

Now, we describe some baselines for the ISVQA problem. These baselines di-
rectly adapt single image VQA models. The first of these processes each image
separately and concatenates the features obtained from each image to predict the
answer. The second baseline directly adapts VQA methods by simply stitching
the images and using single image VQA methods to predict the answer.

We also propose an approach to address the special challenges in ISVQA.
A fundamental direction to solve ISVQA problem is to enable finer-grained and
across-image interactions in a VQA model, where self-attention-based trans-
formers can fit well. In particular, we adapt LXMERT [28], which is designed
for cross-modality learning, to both cross-modality and cross-image scenarios.
Concatenate-Feature. Starting from a given set of n images S = {I1, I2, . . . , In},
we use a region proposal network (RPN) to extract region proposals Ri, i =
1, 2, . . . , n and the corresponding RoI-pooled features (fc6). With some abuse
of notation, we denote the region features obtained from each image as Ri ∈
Rp×d, i = 1, 2, . . . , n, where p is the number of region features obtained from each
image and d is the dimension of the features. We are also given a natural language
question Q = {v1, v2, . . . , vT }, where vi is the ith word, encoded as a one-hot
vector over a fixed vocabulary V of size dV . For all the models, we first obtain
question token embeddings E = {WT

w vi}Ti=1, where Ww ∈ RdV ×dq is a continu-
ous word-vector embedding matrix. We obtain the question embedding feature
using an LSTM-attention module, i.e., q = AttentionPool(LSTM(E)) ∈ Rdq .

Figure 7 shows an outline of the model. For each image, Ii, we obtain the
image embedding, xi by attending over the corresponding region features Ri

using the question embedding q.

xi = AttentionPool(Combine(Ri, q)) (1)

where, we use element-wise multiplication (after projecting to suitable dimen-
sions) as the Combine layer and AttentionPool is a combination of an Attention
module over the region features which is calculated through a softmax operation
and a Pool operation. The region features are multiplied by the attention and
added to obtain the pooled image representation. For a single image, this model
is an adaptation of the recent Pythia model [27] without its OCR functionality.
We concatenate the image features xi and element-wise multiply by the question
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Fig. 7: Concatenate-Feature Baseline. This method adapts a single-image
VQA model to an image set S = {I1 . . . In}. We first extract region proposals, Ri

from each image Ii. The model attends over the regions in each image separately
using the question embedding q. Pooling the region features gives a represen-
tation of an image as xi. These are concatenated and combined (element-wise
multiplied) by the question embedding to give the joint scene representation x.
We use fully-connected layers to predict the final answer a.

embedding to obtain the joint embedding

x = Combine(Concat(x1, x2, . . . , xn), q) (2)

where the Combine layer is again an element-wise multiplication. This is passed
through a small MLP to obtain the distribution over answers, PA = MLP(x).
Stitched Image. Our next baseline is also an adaptation of existing single-
image VQA methods. We start by stitching all the images in an image set into
a mosaic, similar to the ones shown in figure 6. Note that the ISVQA setting
does not require the images in an image set to follow an order. Therefore, the
stitched image obtained need not be panoramic. We train the recent Pythia [27]
model on the stitched images and report performance in table 2.
Video VQA. To highlight the differences between Video VQA and ISVQA,
we adapt the recent state-of-the-art method HME-VideoQA [8]. This model
consists of heterogeneous memory module which can potentially learn global
context information. We consider images in the image set as frames of a video.
Note that, the images in an image set in ISVQA do not necessarily constitute
the frames of a video. Therefore, it is reasonable to expect such Video VQA
methods to not provide any advantages over our baselines.

Using these baselines, we show that ISVQA is not a trivial extension of VQA.
Solving ISVQA requires development of specialized methods.
Transformer-based Method. We utilize the power of transformers and adapt
the LXMERT model [28] to both cross-modality and cross-image scenarios. The
transformer can summarize the relevant information within an image set and also
model the across-image finer-grained dependencies. Here, we briefly described
the original LXMERT model and then describe our modifications.

LXMERT learns cross-modality representations between regions in an image
and sentences. It first uses separate visual and language encoders to obtain
visual and semantic embeddings. The visual encoder consists of several self-
attention sub-layers which help in encoding the relationships between objects.
Similarly, the language encoder consists of multiple self-attention sub-layers and
feed-forward sub-layers which provide a semantic embedding for the sentence or
question. The visual and semantic embeddings are then used to attend to each
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other via cross-attention sub-layers. This helps the LXMERT model learn final
visual and language embeddings which can tightly couple the information from
visual and semantic domains. These coupled embeddings can be seen as the joint
representations of the image and sentence and are used for inference.

Instead of using features from only a single image as input to the object-
relationship encoder, we propose to use the region features from each image in
our image-set. As described above, we start by extracting p region proposals
and the corresponding features from each of the n images in the image set.
We pass the p × n region features as inputs to the object-relationship encoder
in LXMERT. We note that this enables the our model to encode relationships
between objects across different images.

Let us denote the image features as R = [R1;R2; . . . ;Rn] ∈ Rpn×d, where
Ri are the region features obtained from Ii. We also have the corresponding
position encodings of each region in the images P = [P1;P2; . . . ;Pn] ∈ Rpn×4,
where Pi contains the bounding box co-ordinates of the regions in Ii. We combine
the region features and position encodings to obtain position-aware embeddings,
S ∈ Rpn×d′

, where S = LayerNorm(FC(R)) + LayerNorm(FC(P )). Within- and
across-image object relationships are encoded by applying NR layers of the object
relationship encoder. The l-th layer can be represented as

xl = FC(FC(SelfAttention(xl−1))) (3)

where, x0 = S, and X(= xNR
) is the final visual embedding of the object-

relationship encoder.
Similarly, given the word embeddings of the question, E, and the index em-

beddings of each word in the question, E′ = {IdxEmbed(1), . . . , IdxEmbed(T )},
the index-aware word embedding of the i-th word is obtained as Hi =
LayerNorm(Ei + E

′

i). Note that the index embedding, IdxEmbed, is just a pro-
jection of the position of the word to a vector using fully-connected layers.
We apply a similar operation as equation 3 NL times to the word embeddings
H = [H1;H2; . . . ;HT ] ∈ RT×dq to give the question embedding, L.

Finally, LXMERT consists of NX cross-modality encoders stacked one-after-
another. Each encoder consists of two operations: 1.) language to vision cross
attention, X = FC(SelfAttention(CrossAttentionLV (X,L))); and 2.) vision to
language cross attention, L = FC(SelfAttention(CrossAttentionV L(L,X))). The
final output of the NX encoders are used to predict the answer.
Evaluating Biases in the Datasets. We also evaluate the following prior-
based baselines to reveal and understand the biases present in the datasets.
Näıve Baseline. The model always predicts the most frequent answer from the
training set. For nuScenes, it always predicts “yes”, while for Gibson it predicts
“white”. Ideally, this should set a minimum performance bar.
Hasty-Student Baseline. In this baseline, a model simply finds the most frequent
answer for each type of question. In this case, we define a “question type” as
the first two words of a question. For example, a hasty-student might always
answer “one” for all “How many” questions. This is similar to the hasty-student
baseline used in [19] (MovieQA).
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Question-Only Baseline. In this model, we ignore the visual information and
only use question text to train a model. Our implementation takes as input
only the question embedding, q which is passed through several fully-connected
layers to predict the answer distribution. This baseline is meant to reveal the
language-bias present in the dataset.

5 Experiments

5.1 Human Performance

An ideal image-set question answering system should be able to reach at least
the accuracy achieved by humans. We evaluate the human performance using
the annotations with the standard VQA-accuracy metric described below. For
the outdoor scenes dataset, humans obtain a VQA-accuracy of 91.88% and for
the indoor scenes they obtain 88.80%. Comparing this with table 2 shows that
ISVQA is extremely challenging and requires specialized methods. The reason
for the human performance being lower than 100% is that, in many cases an
annotator has given an answer which is not exactly similar to the other two but
is still semantically similar. For example, the majority answer might have been
“black and white” but the third annotator answered “white and black”.

5.2 Implementation Details

We start by using Faster R-CNN in Detectron to extract the region proposals and
features Ri for each image. Each region feature is 2048-D and we use the top 100
region proposals from each image. To obtain the word-vector embeddings we use
300-D GloVe [23] vectors. The joint visual-question embedding, x is taken to be
5000-D. For evaluation, we use the VQA-Accuracy metric [4]. A predicted answer
is given a score of one if it matches at least two out of the three annotations. If it
matches only one annotations, it is given a score of 0.5. All of our VQA models
are implemented in the Pythia framework [26] and are trained on two NVIDIA
V100 GPUs for 22,000 iterations with a batch size of 32. The initial learning rate
is warmed up to 0.01 in the first 1,000 iterations. The learning rate is dropped by
a factor of 10 at iterations 12,000 and 18,000. For the HME-VideoQA model, we
use the implementation provided by the authors. We train the model for 22,000
iterations with a batch size of 32 and a starting learning rate of 0.001. For the
transformer-based model, we use NL = 9, NR = 5, NX = 5. We use a batch-size
of 32, learning rate of 0.00005, and we train the model for 20 epochs. All feature
dimensions are kept the same as LXMERT.

5.3 Results

We report the VQA-accuracy for all methods in table 2. The accuracy achieved
by both of the VQA-based baselines is only around 50−54% and the Video VQA
model achieves only 39.88% for the indoor dataset and 52.14% for the outdoor
dataset. This highlights the need for advanced models for ISVQA.
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Comparison between Baselines. Table 2 shows that the näıve baseline reaches
a VQA-Accuracy of only 8.6% for the indoor scenes dataset compared to 47.57%
given by the Concatenate-Feature baseline and 50.53% given by the Stitched-
Image baseline model. This shows that single-image VQA methods are not
enough to overcome the challenges presented by ISVQA. On the other hand,
our proposed transformer-based model performs the best for both indoor and
outdoor scenes out-performing other models by over 10%.

Language Biases. Recent works (e.g. [2]) show that high performance in VQA
could be achieved using only the language components. Deep networks can easily
exploit biases in the datasets to find short-cuts for answering questions. We
observe that most VQA-based baselines perform much better than the question-
only baseline. This shows that the ISVQA datasets are less biased compared to
many existing VQA datasets [2] and validates the utility of developing ISVQA
models that can utilize both the visual and language components simultaneously.

Table 2: Results for both indoor and outdoor datasets.
Method VQA-Accuracy (%)

Gibson nuScenes

Näıve 8.61 22.46
Prior-Based Baselines Hasty-Student 27.22 41.65

Question-Only 40.26 46.06

Video-VQA 39.88 52.14
Approaches Concatenate-Feature 47.57 53.66

Stitched-Image 50.53 54.32
Transformer-Based 61.58 64.91

Human Performance 88.80 91.88

Performance by Question Type. Figure 8 shows the accuracy bar-chart of
our single-image VQA-based baselines for various types of questions. Using this
chart, we have the following observations and hypotheses:

Single-image VQA baselines can predict single-object attributes. Both
baseline models can answer questions about colors of single objects well (black
and gray bars). This is expected because no cross-image dependency is needed.

General cases may need cross-image inference. A large portion of ques-
tions involve multiple objects, which may appear in different images. The two
VQA baselines using simple attention do not perform well on such questions.
The across-image transformer-based approach performs much better.

Stitched-Image captures cross-image dependency better. The Stitched-
Image baseline allows direct pooling from regions in all images, which may
capture across-image dependency better. It also outperforms the Concatenate-
Feature baseline for most question types, except for the counting questions. The
Stitched-Image cannot avoid double counting. The transformer-based approach
has all the advantages of the Stitched-Image and can do more sophisticated
inference.
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Fig. 8: Performance of the two VQA-based baselines for different types of ques-
tions for the combined Gibson test set. Dark colors represent the performance
for Concatenate-Feature baseline and light colors for Stitched Image baseline.
Blue is used for geometric relationship questions, green for counting questions,
red for location, and black for color questions. We notice that the VQA-based
baselines are able to answer simple questions like those about colors of single ob-
jects very well. However, questions involving spatial reasoning between objects
in one image or across images are extremely challenging for such methods.

6 Conclusion and Discussion

We proposed the new task of image-set visual question answering (ISVQA). This
task can lead to new research challenges, such as language-guided cross-image at-
tentions and reasoning. To establish the ISVQA problem and enable its research,
we introduced two ISVQA datasets for indoor and outdoor scenes. Large-scale
annotations were collected for questions and answers with novel ways to present
the scene to the annotators. We performed bias analysis of the datasets to set
up performance lower bounds. We also extended a single-image VQA method
to two simple attention-based baseline models and showed the performance of
state-of-the-art Video VQA model. Their limited performance reflects the unique
challenges of ISVQA, which cannot be solved trivially by the capabilities of ex-
isting models. Approaches for solving the ISVQA problem may need to pass
information across images in a sophisticated way, understand the scene behind
the image set, and attend the relevant images. Another potential direction could
be to create explicit maps of the scenes. However, depending on the complexity
of the scene, different techniques might be required to explicitly construct a co-
herent map. Where such maps can be obtained accurately, reconstruction-based
ISVQA solutions can be more accurate than the baselines. Meanwhile, humans
do not have to do exact scene reconstruction to answer questions. So, in this
paper, we have focused on methods that can model across-image dependencies
implicitly.
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